首页> 外文期刊>地质学报(英文版) >Geological Characteristics and Genesis of the Jiamoshan MVT Pb–Zn Deposit in the Sanjiang belt, Tibetan Plateau
【24h】

Geological Characteristics and Genesis of the Jiamoshan MVT Pb–Zn Deposit in the Sanjiang belt, Tibetan Plateau

机译:青藏高原三江带佳磨山MVT铅锌矿床地质特征及成因

获取原文
获取原文并翻译 | 示例
       

摘要

The carbonate-hosted Pb–Zn deposits in the Sanjiang metallogenic belt on the Tibetan Plateau are typical of MVT Pb–Zn deposits that form in thrust-fold belts. The Jiamoshan Pb–Zn deposit is located in the Changdu area in the middle part of the Sanjiang belt, and it represents a new style of MVT deposit that was controlled by karst structures in a thrust–fold system. Such a karst-controlled MVT Pb–Zn deposit in thrust settings has not previously been described in detail, and we therefore mapped the geology of the deposit and undertook a detailed study of its genesis. The karst structures that host the Jiamoshan deposit were formed in Triassic limestones along secondary reverse faults, and the orebodies have irregular tubular shapes. The main sulfide minerals are galena, sphalerite, and pyrite that occur in massive and lamellar form. The ore-forming fluids belonged to a Mg2+–Na+–K+–SO2-4–Cl-–F-–NO-3–H2 O system at low temperatures(120–130°C) but with high salinities(19–22% NaCl eq.). We have recognized basinal brine as the source of the ore-forming fluids on the basis of their H–O isotopic compositions(-145‰ to-93‰ for δDV-SMOW and-2.22‰ to 13.00‰ for δ18 Ofluid), the ratios of Cl/Br(14–1196) and Na/Br(16–586) in the hydrothermal fluids, and the C–O isotopic compositions of calcite(-5.0‰ to 3.7‰ for δ13 CV-PDB and 15.1‰ to 22.3‰ for δ18 OV-SMOW). These fluids may have been derived from evaporated seawater trapped in marine strata at depth or from Paleogene–Neogene basins on the surface. The δ34 S values are low in the galena(-3.2‰ to 0.6‰) but high in the barite(27.1‰), indicating that the reduced sulfur came from gypsum in the regional Cenozoic basins and from sulfates in trapped paleo-seawater by bacterial sulfate reduction. The Pb isotopic compositions of the galena samples(18.3270–18.3482 for 206 Pb/204 Pb, 15.6345–15.6390 for 207 Pb/204 Pb, and 38.5503–38.5582 for 208 Pb/204 Pb) are similar to those of the regional Triassic volcanic-arc rocks that formed during the closure of the Paleo-Tethys, indicating these arc rocks were the source of the metals in the deposit. Taking into account our new observations and data, as well as regional Pb–Zn metallogenic processes, we present here a new model for MVT deposits controlled by karst structures in thrust–fold systems.

著录项

  • 来源
    《地质学报(英文版)》 |2020年第4期|1238-1255|共18页
  • 作者单位

    Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources Institute of Geology Chinese Academy of Geological Sciences Beijing 100037 China;

    Institute of Mineral Resources Chinese Academy of Geological Sciences Beijing 100037 China;

    Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources Institute of Geology Chinese Academy of Geological Sciences Beijing 100037 China;

    Wuhan Center China Geological Survey Wuhan 430205 China;

    Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources Institute of Geology Chinese Academy of Geological Sciences Beijing 100037 China;

    School of Earth Sciences and Resources China University of Geosciences (Beijing) Beijing 100083 China;

  • 收录信息 中国科学引文数据库(CSCD);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-19 04:43:43
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号