首页> 中文期刊> 《地质学报:英文版》 >Low Mantle Perovskite:Solid Solution, Spin State of Iron and Water Solubility

Low Mantle Perovskite:Solid Solution, Spin State of Iron and Water Solubility

         

摘要

Silicate perovskites((Mg, Fe)SiO 3 and CaS iO 3) are believed to be the major constituent minerals in the lower mantle. The phase relation, solid solution, spin state of iron and water solubility related to the lower mantle perovskite are of great effect on the geodynamics of the Earth's interior and on ore mineralization. Previous studies indicate that a large amount of iron coupled with aluminum can incorporate into magnesium perovskite, but this is discordant with the disproportionation of(Mg,Fe)SiO 3 perovskite into iron-free MgS i O3 perovskite and hexagonal phase(Mg0.6Fe0.4)SiO 3 in the Earth's lower mantle. MnS iO 3 is the first chemical component confirmed to form wide range solid solution with Ca SiO 3 perovskite and complete solid solution with MgS i O3 perovskite at the P-T conditions in the lower mantle, and addition of Mn Si O3 will strongly affects the mutual solubility between Mg Si O3 and CaS iO 3. The spin state of iron is deeply depends on the site occupation of the Fe3+or Fe2+, the synthesis and the annealing conditions of the sample. It seems that the spin state of Fe2+ in the lower mantle perovskite can be settled as high spin, however, the existence of intermediate spin or low spin state of Fe2+ in perovskite has not been clarified. Moreover, different results have also been reported for the spin state of Fe3+ in perovskite. The water solubility of the lower mantle perovskite is related with its composition. In pure Mg SiO 3 perovskite, only less than 500 ppm water was reported. Al–Mg Si O3 perovskite or Al–Fe–MgS iO 3 perovskite in the lower mantle accommodates water of 1100 to 1800 ppm. Further experiments are necessary to clarify the detailed conditions for perovskite solid solution, to reliably analyze the valence and spin states of iron in the coexisting iron-bearing phases, and to compare the water solubility of different phases at different layers for deeply understanding the geodynamics of the Earth's interior and ore mineralization.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号