首页> 中文期刊> 《生物化学与生物物理学报:英文版》 >Histone demethylase KDM2B promotes triple negative breast cancer proliferation by suppressing p15INK4B p16INK4A, and p5KIP2 transcription

Histone demethylase KDM2B promotes triple negative breast cancer proliferation by suppressing p15INK4B p16INK4A, and p5KIP2 transcription

         

摘要

H3K4me3 and H3K36me2 histone demethylase KDM2B is an epigenetic regulatory factor involved in cell proliferation in numerous cells including breast cancer cells, however, the regulatory mechanism of KDM2B in cell proliferation of breast cancer cells, specifically in triple negative breast cancer(TNBC), remains largely unknown. In this study, we showed that higher expression level of KDM2B was associated with poor prognosis in TNBC. Using cell proliferation assay, we found that KDM2B promoted TNBC cell proliferation by suppressing the transcription of the cell cycle inhibitors p15INK4B, p16INK4A, and p57KIP2. Chromatin immunoprecipitation assay results showed that KDM2B bound to the promoters of these genes and thereby reduced the H3K4me3 and H3K36me2 levels, leading to the suppression of gene transcription in a histone demethylation activity-dependent manner. Silencing of p151NK4B, p16INK4A, and p57KIP2 in TNBC cells was shown to restore the promoting effect of KDM2B on TNBC cell proliferation. The present study reveals a novel cell regulatory mechanism through which KDM2B promotes TNBC cell proliferation by binding to the promoters of p15INK4B, p16INK4A, and p55KIP2, which reduces H3K4me3 and H3K36me2 levels to suppress gene transcription.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号