首页> 中文期刊> 《自动化学报》 >Multiple Local Reconstruction Model-based Fault Diagnosis for Continuous Processes

Multiple Local Reconstruction Model-based Fault Diagnosis for Continuous Processes

         

摘要

In the present work,the multiplicity of fault characteristics is proposed and analyzed to improve the fault diagnosis performance.It is based on the following recognition that the underlying fault characteristics in general do not stay constant but will present changes along the time direction.That is,the fault process reveals different variable correlations across different time periods.To analyze the multiplicity of fault characteristics,a fault division algorithm is developed to divide the fault process into multiple local time periods where the fault characteristics are deemed similar within the same local time period.Then a representative fault decomposition model is built in each local time period to reveal the relationships between the fault and normal operation status.In this way,these different fault characteristics can be modeled respectively.The proposed method gives an interesting insight into the fault evolvement behaviors and a more accurate from-fault-to-normal reconstruction result can be expected for fault diagnosis.The feasibility and performance of the proposed fault diagnosis method are illustrated with the Tennessee Eastman process.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号