首页> 外文学位 >The Magnetic and Plasmonic Properties of Metal and Metal-Oxide Nanoparticles and Their Applications
【24h】

The Magnetic and Plasmonic Properties of Metal and Metal-Oxide Nanoparticles and Their Applications

机译:金属和金属氧化物纳米粒子的磁和等离子体特性及其应用

获取原文
获取原文并翻译 | 示例

摘要

Nanomaterials are designed and synthesized for a wide range of applications including clinical diagnostics, therapeutics, the targeting of bioterrorism agents, wastewater treatment, energy, environmental remediation and sensing. In order to enhance performance in these fields researchers often work with materials that are either magnetic, plasmonic or a combination of both. Nanomaterials can be customized through synthetic variation in size, shape, aspect ratio, the dielectric constant of the surrounding media, surface morphology and whether particles are aggregated. Chapter 1 serves as an introduction to hollow gold nanospheres (HGNs) including their unique plasmonic properties and how these properties can be refined and harnessed for emerging applications. HGNs have hollow solvent filled dielectric cores and polycrystalline gold shells that, due to the two surfaces or interfaces, can generate an enhanced electromagnetic (EM) field. They possess a unique combination of properties that include small size (20-125 nm), large surface to volume (S/V) ratios, spherical shape, narrow and tunable SPR (∼520-1000 nm) and biocompatibility. Their surfaces can also be easily functionalized to target and deliver biomolecules and are resistant to photobleaching. Additionally, their scattering and absorption cross-sections can be tailored, making them excellent candidates for a variety of applications including surface enhanced Raman scattering (SERS), sensing, imaging, drug delivery, site specific silencing and photothermal therapies (PTTs). Chapter 2 describes the detailed synthetic mechanism for creating highly reproducible near infrared (NIR) absorbing HGNs with an emphasis on the cobalt seed particle growth step of the synthesis. Several studies describing HGNs and their applications are found in chapter 3. The first study investigates the interaction of HGNs with Cu2+, commonly found in vivo, and the role that these ions play in aggregation, since aggregation can strongly influence the optical and photothermal properties of HGNs. The second study utilizes HGNs to visualize the Primo Vascular System (PVS) in a rat model. The use of hollow gold?silica double-shell (HGSDS) and hollow gold-silica composite (HGSC) nanostructures as surface enhanced Raman scattering (SERS) substrates for the detection of glucose is detailed in the third study found in chapter 3. Chapter 4 describes the synthesis of large Fe3O4 SiO 2 nanoparticles (∼200 nm) functionalized with gold and poly(vinylpyrrolidone) synthesized for bio-separation and SERS sensing applications. These particles have a unique surface morphology comprised of roughened gold nodules. The surface coatings prevent oxidation and render the particles easy to functionalize in order to target a wide range of moieties. The gold coverage is not only uniform across the entire particle surface but also ultra-thin so as to maintain a high percentage of the cores magnetic saturation (∼68%) when compared to bare magnetite. The gold nodules facilitate the generation of hot spots that enhance the EM associated with the particle surface and are useful in sensing applications like SERS spectroscopy whereas the strong magnetic core allows for rapid separation (∼30 s) of target molecules from solution once they are bound to the particles. Finally, in Chapter 5 the effect of polymer and gold functionalization on the magnetic properties of Fe3O4 nanoparticles is examined by superconducting quantum interference device (SQUID) and electron paramagnetic resonance (EPR) along with thoughts on future experimentation that can help to create a more complete story with respect to this unique nanocomposite material.
机译:纳米材料的设计和合成具有广泛的应用,包括临床诊断,治疗,生物恐怖分子的靶向,废水处理,能源,环境修复和传感。为了提高这些领域的性能,研究人员经常使用磁性,等离子或两者结合的材料。可以通过大小,形状,长宽比,周围介质的介电常数,表面形态以及颗粒是否聚集的合成变化来定制纳米材料。第1章介绍了空心金纳米球(HGN),包括其独特的等离激元性质以及如何完善和利用这些性质以用于新兴应用。 HGN具有填充空心溶剂的介电芯和多晶金壳,由于这两个表面或界面,它们可以产生增强的电磁(EM)场。它们具有独特的特性组合,包括小尺寸(20-125 nm),大的表面体积(S / V)比,球形,窄且可调的SPR(〜520-1000 nm)和生物相容性。它们的表面也可以很容易地功能化,以靶向和传递生物分子,并且具有抗光漂白性。此外,可以对它们的散射和吸收截面进行定制,使其成为各种应用的理想之选,包括表面增强拉曼散射(SERS),传感,成像,药物输送,位点沉默和光热疗法(PTT)。第2章介绍了用于创建高度可复制的近红外(NIR)吸收HGN的详细合成机制,重点是合成中钴种子粒子的生长步骤。第3章中进行了数项描述HGN及其应用的研究。第一项研究调查了HGN与体内常见的Cu2 +的相互作用,以及这些离子在聚集中的作用,因为聚集会强烈影响HGN的光学和光热性质。 HGNs。第二项研究利用HGN可视化大鼠模型中的Primo血管系统(PVS)。第三章中的第三项研究详细介绍了使用中空金-二氧化硅双壳(HGSDS)和中空金-二氧化硅复合物(HGSC)纳米结构作为表面增强拉曼散射(SERS)底物来检测葡萄糖。描述了用金和聚乙烯吡咯烷酮功能化的大型Fe3O4 SiO 2纳米颗粒(约200 nm)的合成,这些纳米颗粒合成用于生物分离和SERS传感应用。这些颗粒具有由粗糙的金结核组成的独特表面形态。表面涂层可防止氧化并使颗粒易于功能化,以靶向广泛的部分。与裸露的磁铁矿相比,金的覆盖度不仅在整个颗粒表面均匀,而且超薄,以保持高比例的铁心磁饱和(〜68%)。金结核有助于产生热点,增强与颗粒表面相关的电磁场,并在SERS光谱等传感应用中有用,而强磁芯可将目标分子与溶液结合后迅速从溶液中分离(约30 s)到粒子。最后,在第5章中,通过超导量子干涉仪(SQUID)和电子顺磁共振(EPR)检验了聚合物和金官能化对Fe3O4纳米颗粒的磁性的影响,以及对未来实验的想法,这些想法可以帮助创建更完整的关于这种独特的纳米复合材料的故事。

著录项

  • 作者

    Adams, Staci A.;

  • 作者单位

    University of California, Santa Cruz.;

  • 授予单位 University of California, Santa Cruz.;
  • 学科 Materials science.;Physical chemistry.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 181 p.
  • 总页数 181
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号