首页> 外文学位 >Elastic scattering phenomena in molecularly-linked gold nanoparticle films.
【24h】

Elastic scattering phenomena in molecularly-linked gold nanoparticle films.

机译:分子连接的金纳米颗粒薄膜中的弹性散射现象。

获取原文
获取原文并翻译 | 示例

摘要

We have investigated the conductance, g, of 1,4-butanedithiol linked Au nanoparticle films as a function of temperature, T, bias potential, V, and applied magnetic field, B. An interesting temperature dependence is observed for non-metallic films with thicknesses just below a critical film thickness: g ∝ exp [-(T0/T)1/2 ] for 20 K ≤ T ≤ 300 K. We show that this temperature dependence is incompatible with an Efros-Shklovskii "variable range hopping" model, since "hopping distances" are too large to be consistent with tunneling processes, and tend to scale with size of super-clusters of molecularly-linked nanoparticles. We propose a "quasilocalized hopping" model based on competition between single-electron charging of super-clusters and electron backscattering within super-clusters to explain the observed temperature dependence. Various electron scattering time scales are extracted from magnetoconductance data using a modified "weak localization" model. Elastic scattering time scales are comparable to those required for an electron to traverse a nanoparticle, while inelastic and spin-orbit scattering time scales are consistent with those found in studies of conventionally-prepared granular Au films.;At interfaces between metallic 1,4-butanedithiol-linked Au nanoparticle films and conventional superconductors, we find that g consistently exhibits peaks, as well as oscillations, that depend simultaneously on both V and B. Such peaks and correlated conductance oscillations are predicted by an enhanced Andreev reflection process due to disorder-driven elastic scattering and electron-hole interference in the nanoparticle film. While oscillations have been predicted by a so-called "reflectionless tunneling" model, they have not been observed at other normal-superconductor interfaces. We speculate that oscillations are observable in this system due to synthetically controlled uniformity of elastic scattering length (i.e., nanoparticle diameter) and a reduced number of current-carrying pathways, especially near the interface. Contrary to predictions of existing "reflectionless tunneling" models, we find that the periods of oscillation in B decrease as T increases. This suggests that the area of interfering pathways increases with T. We propose that this increasing area can be attributed to magnetic field penetration into the superconductor. Conductance data agrees remarkably well with known temperature dependence of penetration depth predicted by BCS theory. Our study shows that this additional region of flux must be considered in experimental and theoretical studies of "reflectionless tunneling", and underscores the utility of molecularly-linked nanoparticle films as a platform for studying charge transport.
机译:我们已经研究了1,4-丁二硫醇键合的Au纳米颗粒薄膜的电导率g与温度,T,偏置电势V和施加的磁场B的关系。对于具有厚度刚好低于临界膜厚度:20 K≤T≤300 K时,g ∝ exp [-(T0 / T)1/2]。我们证明了这种温度依赖性与Efros-Shklovskii“可变范围跳跃”模型不兼容,因为“跳跃距离”太大而不能与隧穿过程相一致,并且倾向于随着分子连接的纳米粒子的超团簇的尺寸而缩放。我们基于超级团簇的单电子电荷与超级团簇内的电子反向散射之间的竞争,提出了一个“准局部跳变”模型,以解释观察到的温度依赖性。使用修改后的“弱定位”模型从磁导数据中提取各种电子散射时标。弹性散射时间标度与电子穿过纳米粒子所需的时间标度相当,而非弹性和自旋轨道散射时间标度与常规制备的颗粒状金膜的研究结果一致。丁烷醇连接的金纳米粒子薄膜和常规超导体,我们发现g始终显示出峰和振荡,这些峰同时取决于V和B。由于无序现象,增强的Andreev反射过程可预测此类峰和相关的电导振荡。驱动的弹性散射和纳米粒子薄膜中的电子空穴干扰。虽然已经通过所谓的“无反射隧穿”模型预测了振荡,但是在其他法向超导体界面上却未观察到振荡。我们推测由于合成控制的弹性散射长度(即纳米颗粒直径)的均匀性和减少的载流通路(特别是在界面附近)的数量,在该系统中可观察到振荡。与现有“无反射隧穿”模型的预测相反,我们发现B的振荡周期随着T的增加而减小。这表明干扰路径的面积随T的增加而增加。我们认为,该增加的面积可归因于磁场渗透到超导体中。电导率数据与BCS理论预测的渗透深度的已知温度依赖性非常吻合。我们的研究表明,在“无反射隧穿”的实验和理论研究中必须考虑通量的这一额外区域,并强调了分子连接的纳米颗粒薄膜作为研究电荷传输的平台的实用性。

著录项

  • 作者

    Dunford, Jeffrey Loren.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 213 p.
  • 总页数 213
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号