首页> 外文学位 >Discrete Element Method Modeling of Biomass Fast Pyrolysis Granular Flows
【24h】

Discrete Element Method Modeling of Biomass Fast Pyrolysis Granular Flows

机译:生物质快速热解颗粒流的离散元方法建模

获取原文
获取原文并翻译 | 示例

摘要

Organic biomass is an abundant renewable resource on the earth and properly utilizing biomass resources could provide an alternative energy to traditional fossil fuels and help to mitigate the impacts of energy consumption on environment and climate change. Fast pyrolysis is one way to achieve thermochemical conversion of biomass organic materials into bio-oil at mild temperature (500 oC) in the absence of oxygen. Due to high heating rate requirement and low thermal conductivities of biomass materials, physical processes such as particulate flows, mixing and heat transfer have complicated effects on biomass fast pyrolysis at both reactor scale and particle scale. Besides the intensive research of the chemistry of biomass fast pyrolysis, study of the underlying physics is also necessary for gaining more knowledge of biomass fast pyrolysis processes in practical reactors.;In this research, the biomass pyrolysis reactive granular flow in a double screw reactor is numerically investigated and the underlying physics such as particle mixing and heat transfer in the reactor are studied. A new Discrete Element Method (DEM) model was proposed with extended capability of modeling particle-particle and particle-wall heat transfer and integrating biomass devolatilization reaction models for simulating reactive granular flows. In the DEM model, the particle hydrodynamics is modeled by adopting Hertz-Mindlin nonlinear soft sphere model. The particle-scale heat transfer model considers both conductive and radiative heat transfer between particle and particle/wall. The biomass devolatilization model involves coupling with energy equation in an adaptive time step manner and considers the variation of solid particle thermal properties with temperature and conversion process.;Particle flow and mixing have a great impact on biomass fast pyrolysis process by affecting the heat transfer dynamics in the granular flow. The DEM was first employed to investigate the granular flow and particle mixing in a double screw reactor. Visual observations suggest the simulation captures the particle mixing trends observed in the experiments. Results indicate that the mixing index profile in the axial direction shows a mixing-demixing-mixing oscillation pattern. Increasing screw pitch length is detrimental to mixing performance; decreasing the solid particle feed rate reduces the mixing degree; and increasing the biomass to glass bead size ratio decreases mixing performance. A comparison of a binary, single-sized biomass and glass particle mixture to a multicomponent mixture indicates that the binary system has similar mixing pattern as a multicomponent system.;The developed particle-scale heat transfer model was validated by modeling heat transfer in packed beds and comparing simulation predictions with experimental measurements. The simulation results of the heat transfer in the double screw reactor indicate an existence of both spatial and temporal temperature oscillations in the granular flow. The effects of the operating conditions on the average temperature profile, biomass particle temperature probability distribution, heat flux and heat transfer coefficient are analyzed. The results show that the particle-fluid-particle conductive heat transfer pathways are the dominant contributors to the total heat flux, which accounts for approximately 70%--80% in the total heat flux. Radiative heat transfer contributes 14%--26% to the total heat flux. The heat transfer coefficient in the double screw reactor varies in a range of 70 to 110 W/(m2K) depending on the operating conditions. The proposed approach was applied to simulating biomass fast pyrolysis process in the double screw reactors. Results show that the heat of pyrolysis needs to be considered for accurate prediction of biomass pyrolysis process in the reactor. The hemicellulose and cellulose decompositions are predicted to start around 480 K and 600 K, separately, and the predictions are in agreement with experimental studies. The product yield predictions also have a good agreement with experimental studies. Results indicate that both decreasing particle size and reducing feedstock volumetric fill level in the reactor are favorable to the biomass pyrolysis process.;A multi-objective kinetic parameter regression model was proposed for estimating parameters in kinetic models in the last part of this research. The proposed regression model integrated a multi-objective particle swarm optimization algorithm with ODE solver from CVODE. A case study indicates that this regression model has a better performance comparing to traditional deterministic optimization solvers.
机译:有机生物质是地球上丰富的可再生资源,适当利用生物质资源可为传统的化石燃料提供替代能源,并有助于减轻能源消耗对环境和气候变化的影响。快速热解是在没有氧气的情况下,在温和的温度(500 oC)下将生物质有机材料热化学转化为生物油的一种方法。由于对生物质材料的高加热速率要求和低热导率,诸如颗粒流,混合和传热的物理过程对反应器规模和颗粒规模的生物质快速热解具有复杂的影响。除了对生物质快速热解化学进行深入研究外,对基础物理学的研究对于使更多的实际反应器中生物质快速热解过程的知识也很有必要。在本研究中,双螺杆反应器中的生物质热解反应性颗粒流是进行了数值研究,并研究了反应堆中诸如粒子混合和传热等基本物理原理。提出了一种新的离散元方法(DEM)模型,该模型具有扩展的功能,可以对颗粒-颗粒和颗粒-壁的传热进行建模,并集成了生物质挥发反应模型来模拟反应性颗粒流。在DEM模型中,采用Hertz-Mindlin非线性软球模型对粒子流体动力学进行建模。颗粒级传热模型同时考虑了颗粒与颗粒/壁之间的传导和辐射传热。生物质脱挥发分模型涉及以自适应时间步长方式与能量方程耦合,并考虑了固体颗粒热性质随温度和转化过程的变化。颗粒流和混合通过影响传热动力学对生物质快速热解过程有很大影响在颗粒流中。 DEM首先用于研究双螺杆反应器中的颗粒流和颗粒混合。视觉观察表明,模拟捕获了在实验中观察到的颗粒混合趋势。结果表明,在轴向方向上的混合指数分布显示出混合-去混合-混合振荡模式。螺杆螺距长度的增加不利于搅拌性能。降低固体颗粒进料速度会降低混合度;增加生物质与玻璃珠的比例会降低混合性能。将二元,单一尺寸的生物质和玻璃颗粒混合物与多组分混合物进行比较表明,该二元系统的混合模式与多组分系统相似。;通过对填充床中的传热进行建模,验证了所开发的颗粒级传热模型并将模拟预测与实验测量结果进行比较。双螺杆反应器中传热的模拟结果表明,颗粒流中同时存在时空温度振荡。分析了操作条件对平均温度分布,生物质颗粒温度概率分布,热通量和传热系数的影响。结果表明,颗粒-颗粒-颗粒的导热路径是总热通量的主要贡献者,约占总热通量的70%-80%。辐射热传递占总热通量的14%-26%。双螺杆反应器中的传热系数根据操作条件在70至110 W /(m2K)的范围内变化。所提出的方法被应用于模拟双螺杆反应器中的生物质快速热解过程。结果表明,为了准确预测反应器中生物质的热解过程,需要考虑热解的热量。半纤维素和纤维素的分解预计分别在480 K和600 K左右开始,并且该预测与实验研究一致。产品收率预测与实验研究也有很好的一致性。结果表明,减小反应器中的颗粒尺寸和降低原料的体积填充水平均有利于生物质的热解过程。在本研究的最后部分,提出了一种多目标动力学参数回归模型来估算动力学模型中的参数。所提出的回归模型将多目标粒子群优化算法与CVODE的ODE求解器集成在一起。案例研究表明,与传统的确定性优化求解器相比,该回归模型具有更好的性能。

著录项

  • 作者

    Qi, Fenglei.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:38:56

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号