首页> 外文学位 >Dynamic Optoelectronic Properties in Perovskite Oxide Thin Films Measured with Ultrafast Transient Absorption & Reflectance Spectroscopy
【24h】

Dynamic Optoelectronic Properties in Perovskite Oxide Thin Films Measured with Ultrafast Transient Absorption & Reflectance Spectroscopy

机译:用超快速瞬态吸收和反射光谱法测量钙钛矿氧化物薄膜中的动态光电性能

获取原文
获取原文并翻译 | 示例

摘要

Ultrafast transient absorption and reflectance spectroscopy are foundational techniques for studying photoexcited carrier recombination mechanisms, lifetimes, and charge transfer rates. Because quantifying photoexcited carrier dynamics is central to the intelligent design and improvement of many solid state devices, these transient optical techniques have been applied to a wide range of semiconductors. However, despite their promise, interpretation of transient absorption and reflectance data is not always straightforward and often relies on assumptions of physical processes, especially with respect to the influence of heating. Studying the material space of perovskite oxides, the careful collection, interpretation, and analysis of ultrafast data is presented here as a guide for future research into novel semiconductors.;Perovskite oxides are a class of transition metal oxides with the chemical structure ABO3. Although traditionally studied for their diverse physical, electronic, and magnetic properties, perovskite oxides have gained recent research attention as novel candidates for light harvesting applications. Indeed, strong tunable absorption, unique interfacial properties, and vast chemical flexibility make perovskite oxides a promising photoactive material system. However, there is limited research characterizing dynamic optoelectronic properties, such as recombination lifetimes, which are critical to know in the design of any light-harvesting device. In this thesis, ultrafast transient absorption and reflectance spectroscopy was used to understand these dynamic optoelectronic properties in highquality, thin (<50 nm) perovskite oxide films grown by molecular beam epitaxy.;Starting with epitaxial LaFeO3 (LFO) grown on (LaAlO 3)0.3(Sr2AlTaO6)0.7 (LSAT), transient absorption spectroscopy reveals two photoinduced absorption features at the band gap of LFO at 2.4 eV and at the higher energy absorption edge at 3.5 eV. Using a combination of temperature-dependent, variable-angle spectroscopic ellipsometry and time-resolved ultrafast optical spectroscopy on a type I heterostructure, we clarify thermal and electronic contributions to spectral transients in LaFeO3. Upon comparison to thermally-derived static spectra of LaFeO3, we find that thermal contributions dominate the transient absorption and reflectance spectra above the band gap. A transient photoinduced absorption feature below the band gap at 1.9 eV is not reproduced in the thermally derived spectra and has significantly longer decay kinetics from the thermallyinduced features; therefore, this long lived photoinduced absorption is likely derived, at least partially, from photoexcited carriers with lifetimes much longer than 3 nanoseconds.;LaFeO3 has a wide band gap of 2.4 eV but its absorption can be decreased with chemical substitution of Sr for Fe to make it more suitable for various applications. This type of A-site substitution is a common route to change static optical absorption in perovskite oxides, but there are no systematic studies looking at how A-site substitution changes dynamic optoelectronic properties. To understand the relationship between composition and static and dynamic optical properties we worked with the model system of La1--xSrxFeO 3--delta epitaxial films grown on LSAT, uncovering the effects of A-site cation substitution and oxygen stoichiometry. Variable-angle spectroscopic ellipsometry was used to measure static optical properties, revealing a linear increase in absorption coefficient at 1.25 eV and a red-shifting of the optical absorption edge with increasing Sr fraction. The absorption spectra can be similarly tuned through the introduction of oxygen vacancies, indicating the critical role that nominal Fe valence plays in optical absorption. Dynamic optoelectronic properties were studied with ultrafast transient reflectance spectroscopy with broadband visible (1.6 eV to 4 eV) and near-infrared (0.9 eV to 1.5 eV) probes. The sign of the reflectance change in the near-infrared region in LSFO is indicative of carrier bandfilling of newly created electronic states by photoexcited carriers. Moreover, we find that similar transient spectral trends can be induced with A-site substitution or through oxygen vacancies, which is a surprising result. Probing the near-infrared region reveals similar nanosecond (1-3 ns) photoexcited carrier lifetimes for oxygen deficient and stoichiometric films. These results demonstrate that while the static optical absorption is strongly dependent on nominal Fe valence tuned through cation or anion stoichiometry, oxygen vacancies do not appear to play a significantly detrimental role in long lived recombination kinetics.;Although this thesis represents one of the first comprehensive studies using broad band transient absorption and reflectance spectroscopy to study dynamic optoelectronic phenomena in perovskite oxides, it can also serve as a guide for the implementation and interpretation of ultrafast spectroscopy in other material systems. Moreover, the ultrafast work on perovskite oxides indicates that these materials have long nanosecond lifetimes required for light harvesting devices and should be investigated further.
机译:超快速瞬态吸收和反射光谱是研究光激发载流子复合机理,寿命和电荷转移速率的基础技术。由于量化光激发载流子动力学对于许多固态设备的智能设计和改进至关重要,因此这些瞬态光学技术已被广泛应用于半导体。然而,尽管有前途,对瞬态吸收和反射率数据的解释并不总是那么简单,并且常常依赖于物理过程的假设,尤其是在加热影响方面。研究钙钛矿氧化物的材料空间,在此对超快数据进行仔细的收集,解释和分析,为将来对新型半导体的研究提供指导。钙钛矿氧化物是一类具有化学结构ABO3的过渡金属氧化物。尽管就其多种物理,电子和磁性性质进行了传统研究,但钙钛矿氧化物作为光收集应用的新候选者已获得了最近的研究关注。确实,强的可调吸收,独特的界面特性以及巨大的化学柔韧性使钙钛矿氧化物成为有前途的光敏材料体系。但是,关于动态光电特性(例如复合寿命)的研究有限,这对于任何集光装置的设计都是至关重要的。本文采用超快速瞬态吸收和反射光谱技术来了解通过分子束外延生长的高质量,薄(<50 nm)钙钛矿氧化物薄膜中的这些动态光电特性。从(LaAlO 3)上生长的外延LaFeO 3(LFO)开始0.3(Sr2AlTaO6)0.7(LSAT),瞬态吸收光谱显示在2.4 eV的LFO带隙处和3.5 eV的较高能量吸收边缘处有两个光致吸收特征。在I型异质结构上,结合使用依赖温度的可变角度椭圆偏光仪和时间分辨超快光谱仪,我们阐明了LaFeO3中电子和热对光谱瞬变的影响。与热衍生的LaFeO3静态光谱进行比较后,我们发现热贡献主导了带隙上方的瞬态吸收和反射光谱。低于1.9 eV的带隙的瞬态光诱导吸收特征在热衍生光谱中未得到再现,并且具有比热诱导特征更长的衰减动力学。因此,这种长寿命的光致吸收很可能至少部分地来自寿命长于3纳秒的光激发载流子。LaFeO3具有2.4 eV的宽带隙,但是可以用Sr取代Fe来降低其吸收。使它更适合各种应用。这种类型的A位置取代是改变钙钛矿氧化物中静态光学吸收的常用途径,但是还没有关于A位置取代如何改变动态光电特性的系统研究。为了了解组成与静态和动态光学特性之间的关系,我们使用在LSAT上生长的La1-xSrxFeO 3-delta外延薄膜模型系统工作,揭示了A位阳离子取代和氧化学计量的影响。变角光谱椭圆仪用于测量静态光学性能,揭示了1.25 eV处的吸收系数线性增加,并且随着Sr分数的增加,光吸收边缘发生红移。可以通过引入氧空位来类似地调整吸收光谱,这表明标称铁价在光学吸收中起着至关重要的作用。动态光电子特性通过宽带可见探头(1.6 eV至4 eV)和近红外探头(0.9 eV至1.5 eV)的超快速瞬态反射光谱进行了研究。 LSFO中近红外区域的反射率变化的迹象表明,光激发的载流子会填充新创建的电子状态。此外,我们发现可以通过A位取代或通过氧空位来诱导相似的瞬态光谱趋势,这是令人惊讶的结果。探测近红外区域可发现,对于缺氧和化学计量的薄膜,光激发载流子的寿命接近纳秒(1-3 ns)。这些结果表明,尽管静态光吸收强烈依赖于通过阳离子或阴离子化学计量法调节的标称铁价,但氧空位似乎对长寿命的重组动力学没有明显的有害作用。宽带瞬态吸收和反射光谱研究钙钛矿氧化物中的动态光电现象的研究,也可以作为在其他材料系统中实施和解释超快光谱的指南。此外,钙钛矿氧化物的超快工作表明这些材料具有光收集装置所需的长纳秒寿命,应进一步研究。

著录项

  • 作者

    Smolin, Sergey Y.;

  • 作者单位

    Drexel University.;

  • 授予单位 Drexel University.;
  • 学科 Physics.;Engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 164 p.
  • 总页数 164
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号