首页> 外文学位 >Electroneurophysiological Signals for Movement-Based Brain-Computer Interface Applications
【24h】

Electroneurophysiological Signals for Movement-Based Brain-Computer Interface Applications

机译:基于运动的脑机接口应用的神经电生理信号

获取原文
获取原文并翻译 | 示例

摘要

Brain-computer interfaces (BCIs) translate neural signals into machine commands for applications such as non-verbal communication, brain-controlled prostheses, motor rehabilitation, and even entertainment. However, there are knowledge gaps and practical limitations of non-invasive (e.g. electroencephalographic) and invasive (e.g. electrocorticographic (ECoG)) BCIs that need to be addressed before these devices can be used by patients, clinicians, and the community. For example, it was unclear whether BCI use is safe and effective for post-stroke movement physiotherapy, so we conducted a phase I clinical trial in stroke survivors demonstrating that non-invasive BCI physiotherapy does not worsen gait function, and may even be beneficial. However, for BCIs to be widely adopted by patients and clinicians for at-home/outpatient rehabilitation, they need to be available as small, portable, inexpensive systems. Therefore, we developed one such system and showed that these design constraints do not compromise decoding performance compared to large, expensive conventional BCIs. For individuals with paraplegia or tetraplegia due to spinal cord injury (SCI), invasive BCIs are ideal for prosthetic use (e.g. exoskeleton control of limb movements/walking) due to their superior spatiotemporal resolution (and therefore decoding accuracy) and their capacity to restore proprioceptive movement sensation. For practical reasons, these BCIs should be developed as implantable systems. However, current digital signal processors that are amenable to implantation have limited computational resources for decoding. Therefore, studies that enhance our understanding of the electroneurophysiological changes during movements are needed in order to design efficient and effective hardware/software for implantable BCIs. In one preliminary ECoG study, we demonstrated that the amplitude of gamma-band (40-200 Hz) signals from the motor cortex (M1) was associated with force output during upper-extremity movements. In another study, we observed that the amplitude and envelope frequency of leg M1 gamma-band signals were related to the duration and stepping rate of human walking. Findings such as these can be incorporated into the design of future, fully-implantable BCI prostheses for restoring movement in SCI survivors.
机译:脑机接口(BCI)将神经信号转换为机器命令,以用于非语言交流,脑控制的假肢,运动康复甚至娱乐等应用。但是,在患者,临床医生和社区使用这些设备之前,需要解决无创(例如脑电图)和有创(例如脑电图(ECoG))BCI的知识空白和实际限制。例如,尚不清楚使用BCI进行卒中后物理治疗是否安全有效,因此我们在卒中幸存者中进行了一项I期临床试验,证明了无创BCI物理治疗不会使步态功能恶化,甚至可能有益。但是,为了使BCI被患者和临床医生广泛用于家庭/门诊康复,它们需要以小型,便携式,廉价的系统提供。因此,我们开发了一个这样的系统,并表明与大型,昂贵的常规BCI相比,这些设计约束不会影响解码性能。对于因脊髓损伤(SCI)而导致截瘫或四肢瘫痪的人,侵入性BCI具有出色的时空分辨率(因此具有解码准确性),并且具有恢复本体感受的能力,因此非常适合假肢使用(例如,外骨骼控制肢体运动/步行)。运动感觉。出于实际原因,应将这些BCI开发为可植入系统。但是,当前适合植入的数字信号处理器具有有限的解码计算资源。因此,需要进行研究以增强我们对运动过程中电子神经生理学变化的理解,以便为植入式BCI设计高效有效的硬件/软件。在一项初步的ECoG研究中,我们证明了来自运动皮层(M1)的伽马带(40-200 Hz)信号的振幅与上肢运动过程中的力输出有关。在另一项研究中,我们观察到腿部M1伽玛带信号的幅度和包络频率与人类行走的持续时间和步速有关。这些发现可以纳入未来完全植入的BCI假体的设计中,以恢复SCI幸存者的运动。

著录项

  • 作者

    McCrimmon, Colin Matthew.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Bioengineering.;Neurosciences.;Physiology.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 179 p.
  • 总页数 179
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号