首页> 外文学位 >Brain Computer Interface Design for Robot Assisted Neurorehabilitation
【24h】

Brain Computer Interface Design for Robot Assisted Neurorehabilitation

机译:机器人辅助神经康复的脑计算机接口设计

获取原文
获取原文并翻译 | 示例

摘要

Stroke is the number one cause of movement disability in the world. In recent years, robotic assistance has empowered people with stroke to complete intensive movement therapy in motivating environments, thus matching or bettering the motor recovery attainable with traditional therapy. Yet, motor deficits remain stubbornly persistent, especially for those with severe impairments.;Brain-computer interfaces (BCI) are a technology that can facilitate direct communication between the brain and an external device. BCIs have already been used to control robotic prostheses to replace lost function. The premise of this dissertation is that, with the right tools and knowledge, BCIs could also help restore function to those with movement disability after a neurologic injury. In this dissertation, I investigate use of a BCI to help individuals with a stroke shape their brain activity while moving the fingers with assistance from a robotic orthosis, with the goal of guiding activity-dependent plasticity in the brain to drive motor recovery. The working hypothesis is that appropriately shaping brain activity will improve finger movement ability and provide a therapeutic benefit after stroke.;First, I present a computational model of motor learning that uses a neural network to simulate the motor cortex after a stroke and during subsequent finger force recovery. These simulations suggested that BCI-based interventions should target perilesional motor areas, thus restoring normative network recruitment during finger movement, and that targeted training should make up about 20% of total limb use to maximize recovery.;In a study of unimpaired people completing a robot-assisted movement task, I identified a key confound of BCI-contingent robot-assisted therapy, showing that robot assistance can affect the BCI even when the participant is passive, which may hinder motor learning. I also present a potential design approach for both the robot and the BCI to avoid this confound.;I then explore BCI methodological considerations in two experiments with impaired and unimpaired people moving in a robot-assisted environment. Key results included that bipolar EEG recordings and finger extension movements led to the best models correlating brain state with ensuing movement and are thus most conducive to BCI-based training.;The culmination of this work is the design of a BCI-robot rehabilitation paradigm, which I tested in a study with eight people with severe impairment after a chronic stroke. Participants participated in four weeks of a therapy protocol that determined the effect of BCI-based sensorimotor rhythm control on finger extension performance. Here, we found that BCI training can improve subsequent movement performance -- a result never before found for individuals with a stroke. The training also produced therapeutic benefits, indicating its viability as a future rehabilitation intervention. Finally, looking to the future of BCI-robot therapy, I present low-cost alternatives for BCI signal acquisition and wearable robotic devices.
机译:中风是世界上导致运动障碍的第一大原因。近年来,机器人辅助技术已使中风患者在充满动力的环境中完成密集运动疗法,从而使传统疗法达到或改善了运动恢复。但是,运动缺陷仍然顽固地持续存在,特别是对于那些患有严重损伤的患者。脑机接口(BCI)是一种可以促进大脑与外部设备之间直接通信的技术。 BCI已被用于控制机器人假体以替代失去的功能。本文的前提是,通过适当的工具和知识,BCI还可以帮助神经损伤后运动障碍者恢复功能。在本文中,我研究了BCI的使用,以帮助中风的人在机器人矫形器的帮助下移动手指的同时塑造手指的大脑活动,目的是指导大脑中与活动有关的可塑性以驱动运动恢复。可行的假设是适当地塑造大脑活动将改善手指的运动能力并在中风后提供治疗益处。首先,我介绍了一种运动学习的计算模型,该模型使用神经网络来模拟中风后和随后的手指运动皮层强制恢复。这些模拟结果表明,基于BCI的干预措施应针对病灶周围运动区域,从而在手指运动期间恢复规范的网络募集,并且针对性的培训应占肢体总使用量的20%左右,以最大程度地康复。在机器人辅助运动任务中,我确定了BCI-contingent机器人辅助治疗的一个关键误区,表明即使参与者是被动的,机器人辅助也会影响BCI,这可能会阻碍运动学习。我还提出了一种针对机器人和BCI的潜在设计方法,以避免这种混淆。然后,我在两个实验中探讨了BCI方法论上的考虑,这些实验涉及在机器人辅助环境中移动的残障人士和无障碍人士。关键结果包括双极EEG记录和手指伸展运动导致了将脑部状态与随之发生的运动相关的最佳模型,因此最有利于基于BCI的训练。该工作的高潮是BCI机器人康复范例的设计,我在一项针对八名慢性中风后严重受损的人的研究中进行了测试。参与者参加了为期四周的治疗方案,该方案确定了基于BCI的感觉运动节律控制对手指伸展性能的影响。在这里,我们发现BCI训练可以改善后续的运动表现-这是中风患者从未发现过的结果。培训还产生了治疗效果,表明了其作为未来康复干预措施的可行性。最后,展望BCI机器人疗法的未来,我提出了BCI信号采集和可穿戴机器人设备的低成本替代产品。

著录项

  • 作者

    Norman, Sumner Lee.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Biomedical engineering.;Neurosciences.;Robotics.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号