首页> 外文学位 >Accessibility and manipulation of brain signals for neuroprosthetic applications.
【24h】

Accessibility and manipulation of brain signals for neuroprosthetic applications.

机译:用于神经修复应用的脑信号的可访问性和操纵性。

获取原文
获取原文并翻译 | 示例

摘要

The field of Neural Engineering spawned in response to the perpetual problem of neurology: injured central nervous system neurons do not regenerate or repair, and stem cell/molecular genetic solutions, while the ideal intervention, are far away from clinical utilization.;A current solution is to substitute computers and electrodes for neurons, as either transducers (cochlear implants, retinal implants, and visual cortex ECoG implants for sensory replacement), regulators (deep brain stimulations for Parkinson's disease), and output signal readers (motor cortex neuroprosthetics).;I have focused on improving the technology of motor neuroprosthetics, and in this dissertation I investigated three sub-systems of this relatively new technology in a rat model.;In my first experiment, I demonstrated that the cingulate cortex, part of the prefrontal cortex, can be used as an additional control signal for a motor neuroprosthetic device in the event that upper motor neurons of the motor cortex are degenerated by neurodegenerative diseases.;In my second experiment, I examined whether electrocorticograms (ECoGs) and local field potentials (LFPs) are independent from the spiking activity of motor neurons and could be thus used as additional control channels. I showed these signals are not necessarily independent, specifically, the spikes phase-lock to the field potentials at defined frequencies, and careful algorithms will have to be developed to combine spikes, LFPs, and ECoGs as different control channels for a neuroprosthetic device.;In my third experiment, I investigated the use of feedback in a neuroprosthetic model. I combined intracortical microstimulation (ICMS) of the visual cortex with simultaneous motor cortex ensemble recordings in real time to demonstrate the feasibility of a closed-loop neuroprosthesis. I showed that though sensory cortex ICMS can be combined with motor cortex recording in real-time in a viable preparation, increased technological development in simultaneous decoding with brain stimulation needs to occur before feasible clinical implementation can become a reality.;By reading and manipulating brain signals via microelectrodes, a basic level of neural control and neural replacement can be achieved. Until the day that physicians have access to technology that allows spinal cords to regrow and limbs to regenerate, current technology allows us to achieve some measure of success by replacing neurons with electrodes.
机译:神经工程学领域的出现是对神经病的永久性问题的回应:受伤的中枢神经系统神经元无法再生或修复,而干细胞/分子遗传学解决方案虽然是理想的干预手段,但离临床使用还很遥远。将用计算机和电极代替神经元,作为换能器(耳蜗植入物,视网膜植入物和视觉皮层ECoG植入物用于感觉置换),调节器(对帕金森氏病的深层大脑刺激)和输出信号读取器(运动皮层神经假体)。我一直致力于改善运动神经假体技术,在本文中,我在大鼠模型中研究了该相对新技术的三个子系统。在我的第一个实验中,我证明了扣带回皮层(前额叶皮层的一部分)如果运动皮层的上部运动神经元处于运动状态,则可以用作运动神经修复设备的附加控制信号在我的第二个实验中,我检查了脑电图(ECoG)和局部场电位(LFP)是否独立于运动神经元的突波活动,因此可以用作其他控制通道。我展示了这些信号不一定是独立的,特别是尖峰在定义的频率上锁存在场电位,因此必须开发谨慎的算法以将尖峰,LFP和ECoG组合为神经修复设备的不同控制通道。在我的第三个实验中,我研究了神经假体模型中反馈的使用。我将视觉皮层的皮层内微刺激(ICMS)与同步运动皮层合奏记录实时结合起来,以证明闭环神经假体的可行性。我证明,尽管可以将感觉皮层ICMS与运动皮层记录实时结合起来,并且可行,但在可行的临床实施成为现实之前,需要在同步刺激与脑刺激的同时进行更多的技术开发。通过微电极发出信号,可以实现神经控制和神经替代的基本水平。直到医师能够使用允许脊髓再生和四肢再生的技术的那一天,当前的技术使我们能够通过用电极替代神经元来取得一定程度的成功。

著录项

  • 作者

    Marzullo, Timothy C.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 106 p.
  • 总页数 106
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 神经科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号