首页> 外文学位 >Intelligent Wireless Multi-Beam Directional Routing with Software-Defined Network Implementation
【24h】

Intelligent Wireless Multi-Beam Directional Routing with Software-Defined Network Implementation

机译:具有软件定义的网络实现的智能无线多波束定向路由

获取原文
获取原文并翻译 | 示例

摘要

Wireless mesh networks (WMNs) have drawn lots of attention in the past decades due to its scalability, robustness, and flexibility. However, the performance of WMNs is still limited by the wireless bandwidth, radio frequency interference, etc. To deal with the limitation, our research first focuses on a particular radio frequency technology, called Multi-beam directional antennas (MBDAs). The MBDA allows a node to simultaneously send out packets in multiple directions without interference among the beams. Thus it significantly improves the throughput and elongates the transmission distance compared with omni-directional or single-beam directional antennas. Our goal in this study is to come up with a series of Artificial Intelligent (AI) strategies to explore MBDAs during routing implementation. Then, the AI method is expanded to a more general WMNs with heterogeneous wireless devices, in which we use centralized network management structure for the purpose of traffic engineering optimization.;First, we present a novel routing scheme for WMNs with MBDAs. It has the following 3 features: (1) Ripple-Diamond-Chain (RDC) shaped routing: to explore the multi-direction transmission capability of the MBDAs, we propose to use rateless codes to obtain loss-resilient symbols for original packets. Those symbols can go through each beam in the same time. Then we propose to use ripples to differentiate each hop of nodes in the tree topology of the WMN, which consists of mesh routers (tree roots) and a large number of mesh clients (tree nodes). The main path consists of the nodes with the best link quality and reliability. The symbols are divergent into multiple paths but converge into the main path node in the next hop. The entire routing topology looks like a diamond chain. By using such RDC style routing, we can fully explore the MBDA benefits. (2) Systematic link quality modeling: Our research targets the highly dynamic radio conditions in the WMN. The directional antennas can cause node capture issue. The link could have deep fading in each hop. The rateless codes need to adjust the transmission pause time. We propose to integrate all these factors together to determine the link quality in dynamical network conditions. (3) AI-Augmented path link selection: Our routing scheme is augmented via Artificial Intelligence (AI) algorithms. Especially, we use two AI techniques to enhance the routing performance: Fuzzy Logic (FL): To adapt different QoS requirements, we propose to use Fuzzy Logic to define the weighted link quality. Thus we know which link should be selected for different QoS flows. Reinforcement Learning (RL): Since the dynamic radio conditions need a long-term consideration of the throughput performance within multiple phases of routing path control, we propose to use RL to select the main path based on the cumulative throughput rewards in all links. In the simulations, we use real-time video as well as other types of traffic types to validate the high-throughput, QoS-differentiated, multi-beam routing efficiency, as well as its intelligent path determination in dynamic WMN environment.;Second, we expand the routing/TE problem from conventional WMNs to Software-Defined Networking based WMNs (SD-WMNs) and propose a novel TE structure on SD-WMN called "Prediction-based Link Uncertainty Solution in SD-WMNs" (PLUS-SW). The SDN aims to realize a centralized monitor and control upon a network by detaching the control module from data plane, in which an independent control plane is employed for the network management and all the routers on data plane are simplified to the dummy packet forwarding devices. Although the centralized control achieved by SDN is promising on the significant improvement of traffic engineering via network-wide management, it is naturally inadequate when responding to the uncertainty of WMNs in terms of latency reduction and coarse control panel management. We thus propose PLUS-SW to overcome these shortages. The PLUS-SW possesses a centralized traffic engineering and wireless channel scheduling on WMNs according to the paradigm of SDN in order to efficiently arrange the network traffic and omit wireless interference in a global manner. Moreover, PLUS-SW employs double-layer supervised learning model to predict unexpected wireless link failure in the sense that the central controller can notice the potential link failure threat and send back the backup solution to affected routers ahead the link failure. The rerouting calculation of PLUS-SW on congested traffic is based on the network-wide observation while keeping the overhead of centralized control at a low level.;Finally, a wireless network platform is also introduced. This platform is built with Software Defined Radio hardware, called USRP. In this platform, we achieved some preliminary functions of WMNs, such as real-time video transmission, cross-layer design and etc. The platform can work as a test bed to estimate the performance of proposed design of traffic engineering.
机译:在过去的几十年中,无线网状网络(WMN)由于其可扩展性,鲁棒性和灵活性而引起了广泛的关注。但是,WMN的性能仍然受到无线带宽,射频干扰等的限制。为解决这些限制,我们的研究首先关注一种特定的射频技术,称为多波束定向天线(MBDA)。 MBDA允许节点在多个方向上同时发送数据包,而不会在波束之间造成干扰。因此,与全向或单波束定向天线相比,它显着提高了吞吐量并延长了传输距离。我们在这项研究中的目标是提出一系列人工智能(AI)策略,以在路由实施过程中探索MBDA。然后,将AI方法扩展到具有异构无线设备的更通用的WMN,在其中我们使用集中式网络管理结构来进行流量工程优化。首先,我们提出了一种具有MBDA的WMN的新颖路由方案。它具有以下3个特征:(1)波纹-钻石链(RDC)形路由:为了探索MBDA的多方向传输能力,我们建议使用无速率码来获得原始数据包的防丢失符号。这些符号可以同时穿过每个光束。然后,我们建议使用波纹来区分WMN的树拓扑中节点的每个跃点,该拓扑由网状路由器(树根)和大量的网状客户端(树节点)组成。主路径由具有最佳链接质量和可靠性的节点组成。这些符号发散到多个路径中,但在下一跳中收敛到主路径节点中。整个路由拓扑看起来像一条钻石链。通过使用这种RDC样式路由,我们可以充分探索MBDA的好处。 (2)系统链路质量建模:我们的研究针对WMN中的高动态无线电条件。定向天线可能会导致节点捕获问题。该链接可能在每个跃点中都有很深的衰落。无速率代码需要调整传输暂停时间。我们建议将所有这些因素整合在一起,以确定动态网络条件下的链路质量。 (3)AI增强的路径链接选择:我们的路由方案通过人工智能(AI)算法得到增强。特别是,我们使用两种AI技术来增强路由性能:模糊逻辑(FL):为了适应不同的QoS要求,我们建议使用模糊逻辑来定义加权链路质量。因此,我们知道应该为不同的QoS流选择哪个链路。强化学习(RL):由于动态无线电条件需要在路由路径控制的多个阶段中长期考虑吞吐量性能,因此我们建议使用RL基于所有链路中的累积吞吐量奖励来选择主路径。在仿真中,我们使用实时视频以及其他类型的流量类型来验证高吞吐量,区分QoS的多波束路由效率以及在动态WMN环境中的智能路径确定。我们将路由/ TE问题从常规WMN扩展到基于软件定义的WMN(SD-WMN),并在SD-WMN上提出了一种新颖的TE结构,称为“ SD-WMN中基于预测的链路不确定性解决方案”(PLUS-SW) 。 SDN的目标是通过将控制模块与数据平面分离,实现对网络的集中监视和控制,其中采用独立的控制平面进行网络管理,并将数据平面上的所有路由器简化为虚拟包转发设备。尽管SDN实现的集中控制有望通过网络范围的管理来显着改善流量工程,但是在响应WMN的不确定性方面,从延迟减少和粗略控制面板管理方面来说,这自然是不够的。因此,我们提出PLUS-SW来克服这些不足。 PLUS-SW根据SDN的范例,在WMN上具有集中的流量工程和无线信道调度功能,以便有效地安排网络流量并以全局方式忽略无线干扰。此外,从中央控制器可以注意到潜在的链路故障威胁并将备份解决方案在链路故障之前发回给受影响的路由器的意义上讲,PLUS-SW采用双层监督学习模型来预测意外的无线链路故障。 PLUS-SW在拥塞流量上的重路由计算是基于全网观察,同时将集中控制的开销保持在较低水平。最后,还介绍了一种无线网络平台。该平台由称为USRP的软件定义无线电硬件构建。在这个平台上,我们实现了WMN的一些初步功能,例如实时视频传输,跨层设计等。该平台可以用作测试平台,以评估交通工程建议设计的性能。

著录项

  • 作者

    Bao, Ke.;

  • 作者单位

    The University of Alabama.;

  • 授予单位 The University of Alabama.;
  • 学科 Engineering.;Electrical engineering.;Computer engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:38:58

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号