首页> 外文学位 >A Modified Gassmann Fluid Substitution Theory for Carbonate Rock Physics Modeling
【24h】

A Modified Gassmann Fluid Substitution Theory for Carbonate Rock Physics Modeling

机译:修正的Gassmann流体置换理论用于碳酸盐岩石物理建模

获取原文
获取原文并翻译 | 示例

摘要

Research now shows that CO2 is a significant cause of the earth's rising temperature. Decreasing those elemental emissions has become a crucial requirement for environment protection. CO2 sequestration in depleted reservoirs is a technique which is widely used to reduce the problem of greenhouse gasses. To guarantee a successful sequestration process, we have to monitor CO2 migration in the reservoir to prevent any leakage, which may cause more pollution difficulties (Matsuoka and Azuma, 2014). 4D time-lapse seismic monitoring is the method by which we can achieve reliable monitoring results (Eiken et al, 2000). However, in some reservoirs, seismic techniques failed to monitor CO2 movement (Blonk et al, 1998). Ensuring our ability to accurately monitor CO2 is a crucial step in the CO2 sequestration project plan (Blonk et al, 1998). Utilizing rock physics modeling, and applying fluid substitutions are effective ways which we can use to examine the feasibility of monitoring CO2 movement within a reservoir. Building a rock physics model in elastic rock is less complicated than in carbonate rock because of the complex heterogeneity of carbonates (Xu and Payne, 2009). We should direct our attention towards developing rock physics models for carbonate reservoirs, as more than percent of the world's reservoirs are carbonates (SLB, 2007). For this thesis, we shadowed the work of Quanxiong et al (2014). Gassmann's fluid substitution can be applied based on Eshelby-Walsh theory to establish a relationship between the elastic properties of the rock (Jiang et al, 2011). Quanxiong et al (2014) called Gassmann-Eshelby-Walsh theory the GEW theory. Notably, we differed from Quanxiong et al (2014), in that we used Reuse-Voigt-Hill average (Hill, 1952) to estimate bulk modulus of the solid matrix. Dry bulk modulus was calculated using Eshelby-Walsh theory, which considers pore geometry effects on bulk modulus of dry rock. Quanxiong et al (2014) assumed that the pores filled with the same fluid and the rock sample consists of one pore system, which is spherical. We used three types of pore systems with different aspect ratios. The aspect ratios and pore geometry types could be determined using Xu-Payne (2009) cross plot and inversion. The sensitivity analysis was performed to examine the effect of CO2 injection on the elastic properties of the carbonate rocks. CO2 injection effects were mapped in 3D modeling using Sequential Gaussian Simulation function to better understand the possible CO2 impact over the entire reservoir.
机译:现在的研究表明,二氧化碳是地球温度升高的重要原因。减少这些元素的排放已经成为环境保护的关键要求。贫化水库中的二氧化碳封存是一项广泛用于减少温室气体问题的技术。为了保证成功的封存过程,我们必须监测储层中的二氧化碳迁移,以防止任何泄漏,泄漏可能造成更多的污染困难(Matsuoka and Azuma,2014)。 4D时移地震监测是我们可以获得可靠监测结果的方法(Eiken等,2000)。但是,在某些油藏中,地震技术未能监测CO2的运动(Blonk等,1998)。确保我们准确监测二氧化碳的能力是二氧化碳封存项目计划中的关键步骤(Blonk等,1998)。利用岩石物理学建模并应用流体替代方法是有效的方法,我们可以使用这些方法来检查监测储层中二氧化碳运动的可行性。在碳酸盐岩中建立岩石物理模型要比在碳酸盐岩中复杂,因为碳酸盐岩的非均质性复杂(Xu和Payne,2009)。我们应该将注意力转向开发碳酸盐岩储层的岩石物理模型,因为世界上超过百分之七十的碳酸盐储层(SLB,2007)。对于本论文,我们掩盖了Quanxiong等人(2014)的工作。可以基于Eshelby-Walsh理论应用Gassmann的流体替代方法来建立岩石弹性特性之间的关系(Jiang等,2011)。 Quanxiong等人(2014年)将Gassmann-Eshelby-Walsh理论称为GEW理论。值得注意的是,我们与Quanxiong等人(2014)的不同之处在于,我们使用了Reuse-Voigt-Hill平均值(Hill,1952)来估计固体基质的体积模量。使用Eshelby-Walsh理论计算干体积模量,该理论考虑了孔隙几何形状对干岩体积模量的影响。 Quanxiong等人(2014年)假设孔隙充满相同的流体,而岩石样品由一个球形的孔隙系统组成。我们使用了三种长宽比不同的孔隙系统。可以使用Xu-Payne(2009)交会图和反演来确定纵横比和孔的几何类型。进行了敏感性分析,以检查注入二氧化碳对碳酸盐岩弹性特性的影响。使用顺序高斯模拟功能在3D建模中映射了CO2注入效果,以更好地了解整个储层中可能的CO2影响。

著录项

  • 作者

    Salman, Alhan.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Petroleum engineering.
  • 学位 M.S.
  • 年度 2017
  • 页码 107 p.
  • 总页数 107
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号