首页> 外文学位 >Developing a Progressive Damage and Failure Model for Hybrid 3D Woven Textile Composites using NCYL Multiscale Method
【24h】

Developing a Progressive Damage and Failure Model for Hybrid 3D Woven Textile Composites using NCYL Multiscale Method

机译:使用NCYL多尺度方法开发混合3D机织纺织品复合材料的渐进式破坏和破坏模型

获取原文
获取原文并翻译 | 示例

摘要

Results from a research study concerned with developing an experimentally validated computational tool for predicting the progressive damage and failure response of 3D woven textile composites (3DWTCs) in a multiscale framework are presented. There are different constituents within the textile composite; fiber tows, including carbon, glass and kevlar. The dry fiber tows are infused with SC-15 polymer matrix into a single composite material. The 3DWTCs are made through a 3D textile weaving process. Three different versions of hybridized architectures are examined to determine the progression of failure under tensile and compressive loading. The different types of 3DWTCs are compared against one another to understand the benefits of hybridization and the resulting performance enhancements. The scope of the project also includes conducting a micro-CT analysis to study the effect of microstructure imperfections on predicting the progressive damage and failure response, using a two-scale computational mechanics framework. The micro-CT analysis delivers information on the size of a representative unit cell (RUC), the fiber tows cross sectional details and the porosity (if any) within the composite. These microstructure scale inputs are the building blocks for 3D geometric modeling and finite element (FE) analysis of unit cell (or a collection of these) at a global scale. The objective of this work is to perform a multiscale investigation to study the progressive damage and failure at different length scales. In the computational modeling, the macroscale finite element analysis (FEA) is carried out at the representative volume element (RVE) and coupon level, while the micromechanics analysis is implemented simultaneously at the subscale level using material properties of the constituents (fiber and matrix) as input. The subscale micromechanics analysis uses the N-layers concentric cylinder model (NCYL) to compute the local fields in the fiber and matrix cylinders. The influence of matrix microdamage at the subscale leads to progressive degradation of fiber tow stiness at the macroscale, modeled using a secant moduli approach, resulting in the pre-peak nonlinear response. The post-peak strain softening response resulting from different failure modes like fiber tow rupture, tow splitting and matrix cracking in fiber tow, as well as inside the volume of textile, are modeled using a mesh-objective smeared crack approach (SCA). The FE models, in addition to being generated using nominally perfect geometry, are also generated directly from Micro-CT data using the software tool SIMPLEWARE. The FE mesh generated using this tool is a replication of real in-situ imperfection in the structure. A study on modeling the geometric imperfections and its effect on global stress-strain response of the structure is carried out both at RVE and Coupon level as a part of this research. The use of analytical solutions at the fiber-matrix scale in a multiscale framework delivers a distinct computational advantage in the damage and failure analysis, where high fidelity and computational efficiency are both gained at the same time.
机译:提出了与研究有关的结果,该研究涉及开发经过实验验证的计算工具,以预测多尺度框架下3D机织纺织品复合材料(3DWTC)的渐进式损坏和失效响应。纺织品复合材料中有不同的成分。纤维束,包括碳纤维,玻璃纤维和凯夫拉纤维。将干纤维束与SC-15聚合物基体一起注入单一复合材料中。 3DWTC通过3D纺织品编织过程制成。研究了三种不同版本的混合架构,以确定在拉伸和压缩载荷下的破坏进程。将不同类型的3DWTC相互比较,以了解杂交的好处以及由此带来的性能增强。该项目的范围还包括使用两级计算力学框架进行微CT分析,以研究微结构缺陷对预测渐进损伤和失效响应的影响。显微CT分析可提供有关代表性单位晶胞(RUC)的尺寸,纤维束横截面细节以及复合材料内孔隙率(如果有)的信息。这些微观结构规模的输入是在全球范围内进行3D几何建模和对晶胞(或它们的集合)进行有限元(FE)分析的基础。这项工作的目的是进行多尺度研究,以研究不同长度尺度下的渐进性损伤和破坏。在计算建模中,在代表体积元素(RVE)和试样级别上进行宏观有限元分析(FEA),而在微观尺度上同时利用组成部分(纤维和基质)的材料特性在微观尺度上进行微力学分析。作为输入。次尺度微力学分析使用N层同心圆柱模型(NCYL)来计算纤维圆柱和基体圆柱中的局部场。使用割线模量法进行建模时,在次尺度上基质微损伤的影响导致纤维牵引稳定性在宏观尺度上逐渐降低,从而导致峰前非线性响应。使用网格目标抹平裂纹法(SCA)对由不同故障模式(例如,纤维束断裂,纤维束中的纤维束分裂和基体开裂)以及织物内部的破坏模式导致的峰后应变软化响应进行建模。除使用名义上完美的几何图形生成FE模型外,还可以使用软件工具SIMPLEWARE直接从Micro-CT数据生成FE模型。使用此工具生成的有限元网格是结构中真实原位缺陷的复制。作为研究的一部分,在RVE和Coupon级别上都进行了对几何缺陷及其对结构整体应力-应变响应的影响进行建模的研究。在多尺度框架中使用纤维矩阵尺度的分析解决方案可在损坏和故障分析中提供明显的计算优势,同时可以同时获得高保真度和计算效率。

著录项

  • 作者

    Patel, Deepak Kumar.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 249 p.
  • 总页数 249
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:38:57

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号