首页> 外文学位 >Investigation of Aerosol Optical and Chemical Properties Using Humidity Controlled Cavity Ring-Down Spectroscopy
【24h】

Investigation of Aerosol Optical and Chemical Properties Using Humidity Controlled Cavity Ring-Down Spectroscopy

机译:湿度控制腔衰荡光谱技术研究气溶胶的光学和化学性质

获取原文
获取原文并翻译 | 示例

摘要

Scientists have been observing a change in the climate since the beginning of the 20th century that cannot be attributed to any of the natural influences of the past. Natural and anthropogenic substances and processes perturb the Earth's energy budget, contributing to climate change. In particular, aerosols (particles suspended in air) have long been recognized to be important in processes throughout the atmosphere that affect climate. They directly influence the radiative balance of the Earth's atmosphere, affect cloud formation and properties, and are also key air pollutants that contribute to a variety of respiratory and cardiovascular diseases. Despite their importance, aerosol particles are less well-characterized than greenhouse gases with respect to their sources, temporal and spatial concentration distribution, and physical and chemical properties. This uncertainty is mainly caused by the variable and insufficiently understood sources, formation and transformation processes, and complex composition of atmospheric particles. Instruments that can precisely and accurately measure and characterize the aerosol physical and chemical properties are in great demand. Atmospheric relative humidity (RH) has a crucial impact on the particles' optical properties; the RH dependence of the particle extinction coefficient is an important parameter for radiative forcing and thus climate change modeling. In this work a Humidity-Controlled Cavity Ring-Down (HC-CRD) aerosol optical instrument is described and its ability to measure RH dependent extinction coefficients and related hygroscopicity parameters is characterized.;The HC-CRD is capable of simultaneously measuring the aerosol extinction coefficient at three wavelengths (lambda = 355, 532, and 1064 nm) and three different RHs (typically 20%, 50%, and 80%). A range of chemicals and their mixtures were used to produce laboratory generated aerosols. Three mixture systems include one inorganic salts mixture system consisting of (NH 4)2SO4, NH4HSO4, Na 2SO4, NaHSO4 serve as surrogates of the ionic salts found in the atmosphere. Two organic mixture systems were investigated: mixtures of NaCl, D-glucose, sucrose, and glycine are benchmarks for compounds emitted from biomass burning. Finally, mixtures of (NH4)2 SO4 (ammonium sulfate, AS) with a series of dicarboxylic acids including malonic acid, adipic acid, and azelaic acid are used as benchmarks to mimic urban pollutants.;The extinction coefficients were obtained as a function of RH from the HC-CRD measurements, from which optical growth factors f(RH) and gamma(RH) values can be determined to examine their dependence on chemical composition. A volume mixing rule was used to calculate the effective refractive index of the binary substrate mixtures, since both size and composition change during water uptake. The SDA/FMC algorithm developed by O'Neill, et al. 2005 is used to extract the van de Hulst phase shift parameter (rhoeff) from three-wavelength measurements of extinction. The fine mode fraction of extinction (eta) and fine mode effective radius (Reff) of laboratory generated aerosol particles can be then determined. An iterative algorithm was developed to retrieve the change in refractive index of particles as function of RH. The calculated Reff of aerosols at different RHs were used to obtain the physical size growth factor (gf), and kappa(RH). The size changes as a function of water uptake describe the dependence of aerosol optical properties on chemical composition.;This work demonstrates the capability of conducting aerosol optical measurements using HC-CRD to determine the RH dependence of aerosol optical properties. The HC-CRD measurements combined with the SDA/FMC method to retrieve aerosol size for laboratory generated aerosols establish the connection between the optical properties and the aerosol particles' chemical compositions. It also underlines the importance and need for future investigation on the hygroscopic properties of atmospheric aerosols. This work is successfully developed a method that enables using the aerosols optical measurements to predict the compositions; it will greatly contribute to the atmospheric aerosol measurement and global climate modeling.
机译:自20世纪初以来,科学家一直在观察气候的变化,这不能归因于过去的任何自然影响。天然的和人为的物质和过程扰乱了地球的能源预算,导致了气候变化。特别是,长期以来,人们一直认为气溶胶(悬浮在空气中的颗粒)在影响大气的整个大气过程中都很重要。它们直接影响地球大气的辐射平衡,影响云的形成和性质,并且还是导致多种呼吸系统疾病和心血管疾病的关键空气污染物。尽管其重要性,但就其来源,时间和空间浓度分布以及物理和化学特性而言,气溶胶颗粒的特征不及温室气体。这种不确定性主要是由可变的和未充分理解的源,形成和转换过程以及大气颗粒的复杂组成引起的。迫切需要能够精确,准确地测量和表征气溶胶物理和化学特性的仪器。大气相对湿度(RH)对颗粒的光学性能有至关重要的影响。颗粒消光系数的相对湿度关系是辐射强迫和气候变化建模的重要参数。在这项工作中,描述了一种湿度控制腔衰荡(HC-CRD)气溶胶光学仪器,并描述了其测量与RH相关的消光系数和相关吸湿性参数的能力。HC-CRD能够同时测量气溶胶的消光在三个波长(λ= 355、532和1064 nm)和三个不同RH(通常为20%,50%和80%)时的系数。一系列化学品及其混合物被用于生产实验室产生的气溶胶。三种混合物系统包括一种无机盐混合物系统,该混合物由(NH 4)2 SO 4,NH 4 HSO 4,Na 2 SO 4,NaHSO 4组成,作为在大气中发现的离子盐的替代物。研究了两种有机混合物系统:NaCl,D-葡萄糖,蔗糖和甘氨酸的混合物是生物质燃烧排放化合物的基准。最后,将(NH4)2SO4(硫酸铵,AS)与一系列二元羧酸(包括丙二酸,己二酸和壬二酸)的混合物用作模拟城市污染物的基准。通过HC-CRD测量得出的RH,可以从中确定光学生长因子f(RH)和γ(RH)值,以检查它们对化学成分的依赖性。由于体积和组成在吸水期间都会变化,因此使用体积混合规则来计算二元基质混合物的有效折射率。 O'Neill等人开发的SDA / FMC算法。 2005年用于从消光的三个波长测量值中提取van de Hulst相移参数(rhoeff)。然后可以确定实验室产生的气溶胶颗粒的精细模式消光分数(η)和精细模式有效半径(Reff)。开发了一种迭代算法来检索作为RH函数的粒子的折射率变化。计算得出的在不同相对湿度下的气溶胶Reff用于获得物理尺寸增长因子(gf)和kappa(RH)。大小变化与吸水量的关系描述了气溶胶光学特性对化学成分的依赖性。这项工作证明了使用HC-CRD进行气溶胶光学测量以确定RH气溶胶光学特性的依赖性的能力。 HC-CRD测量与SDA / FMC方法相结合以检索实验室生成的气溶胶的气溶胶尺寸,从而建立了光学性能与气溶胶颗粒化学成分之间的联系。它还强调了对大气气溶胶的吸湿性进行研究的重要性和未来的需求。这项工作成功地开发了一种方法,该方法可以使用气溶胶光学测量方法来预测组成。这将大大有助于大气气溶胶测量和全球气候模拟。

著录项

  • 作者

    Zhu, Xijing.;

  • 作者单位

    Portland State University.;

  • 授予单位 Portland State University.;
  • 学科 Chemistry.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:38:56

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号