首页> 外文学位 >Environmental degradation of oxidation resistant and thermal barrier coatings for fuel-flexible gas turbine applications.
【24h】

Environmental degradation of oxidation resistant and thermal barrier coatings for fuel-flexible gas turbine applications.

机译:用于燃料柔性燃气轮机应用的抗氧化和隔热涂层的环境退化。

获取原文
获取原文并翻译 | 示例

摘要

The development of thermal barrier coatings (TBCs) has been undoubtedly the most critical advancement in materials technology for modern gas turbine engines. TBCs are widely used in gas turbine engines for both power-generation and propulsion applications. Metallic oxidation-resistant coatings (ORCs) are also widely employed as a stand-alone protective coating or bond coat for TBCs in many high-temperature applications. Among the widely studied durability issues in these high-temperature protective coatings, one critical challenge that received greater attention in recent years is their resistance to high-temperature degradation due to corrosive deposits arising from fuel impurities and CMAS (calcium-magnesium-alumino-silicate) sand deposits from air ingestion. The presence of vanadium, sulfur, phosphorus, sodium and calcium impurities in alternative fuels warrants a clear understanding of high-temperature materials degradation for the development of fuel-flexible gas turbine engines. Degradation due to CMAS is a critical problem for gas turbine components operating in a dust-laden environment. In this study, high-temperature degradation due to aggressive deposits such as V2O5, P2O 5, Na2SO4, NaVO3, CaSO4 and a laboratory-synthesized CMAS sand for free-standing air plasma sprayed (APS) yttria stabilized zirconia (YSZ), the topcoat of the TBC system, and APS CoNiCrAlY, the bond coat of the TBC system or a stand-alone ORC, is examined. Phase transformations and microstructural development were examined by using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy.;This study demonstrated that the V2O5 melt degrades the APS YSZ through the formation of ZrV2O7 and YVO 4 at temperatures below 747°C and above 747°C, respectively. Formation of YVO4 leads to the depletion of the Y2O 3 stabilizer and the deleterious transformation of the YSZ to the monoclinic ZrO2 phase. The investigation on the YSZ degradation by Na 2SO4 and a Na2SO4 + V2O 5 mixture (50-50 mol. %) demonstrated that Na2SO4 itself did not degrade the YSZ, however, in the presence of V2O 5, Na2SO4 formed vanadates such as NaVO3 that degraded the YSZ through YVO4 formation at temperature as low as 700°C. The APS YSZ was found to react with the P2O 5 melt by forming ZrP2O7 at all temperatures. This interaction led to the depletion of ZrO2 in the YSZ (i.e., enrichment of Y2O3 in t'-YSZ) and promoted the formation of the fluorite-cubic ZrO2 phase. Above 1250°C, CMAS deposits were observed to readily infiltrate and significantly dissolve the YSZ coating via thermochemical interactions. Upon cooling, zirconia reprecipitated with a spherical morphology and a composition that depended on the local melt chemistry. The molten CMAS attack destabilized the YSZ through the detrimental phase transformation (t' → t → f + m).;Free standing APS CoNiCrAlY was also prone to degradation by corrosive molten deposits. The V2O5 melt degraded the APS CoNiCrAlY through various reactions involving acidic dissolution of the protective oxide scale, which yielded substitutional-solid solution vanadates such as (Co,Ni) 3(VO4)2 and (Cr,Al)VO4. The molten P2O5, on the other hand, was found to consume the bond coat constituents significantly via reactions that formed both Ni/Co rich phosphates and Cr/Al rich phosphates. Sulfate deposits such as Na2SO 4, when tested in encapsulation, damaged the CoNiCrAlY by Type I acidic fluxing hot corrosion mechanisms at 1000°C that resulted in accelerated oxidation and sulfidation. The formation of a protective continuous Al 2O3 oxide scale by preoxidation treatment significantly delayed the hot corrosion of CoNiCrAlY by sulfates. However, CoNiCrAlY in both as-sprayed and preoxidized condition suffered a significant damage by CaSO4 deposits via a basic fluxing mechanism that yielded CaCrO4 and CaAl2O4. The CMAS melt also dissolved the protective Al2O3 oxide scale developed on CoNiCrAlY by forming anorthite platelets and spinel oxides.;Based on the detailed investigation on degradation of the APS YSZ and CoNiCrAlY by various corrosive deposits, an experimental attempt was carried out to mitigate the melt-induced deposit attack. Experimental results from this study demonstrate, for the first time, that an oxide overlay produced by electrophoretic deposition (EPD) can effectively perform as an environmental barrier overlay for APS TBCs. The EPD protective overlay has a uniform and easily-controllable thickness, uniformly distributed closed pores and tailored chemistry. The EPD Al2O3 and MgO overlays were successful in protecting the APS YSZ TBCs against CMAS attack and hot corrosion attack (e.g., sulfate and vanadate), respectively. Furnace thermal cyclic oxidation testing of overlay-modified TBCs on bond-coated superalloy also demonstrated the good adhesive durability of the EPD Al2O3 overlay.
机译:隔热涂层(TBC)的开发无疑是现代燃气涡轮发动机材料技术中最关键的进步。 TBC在燃气涡轮发动机中广泛用于发电和推进应用。金属抗氧化涂层(ORC)在许多高温应用中也广泛用作TBC的独立保护涂层或粘结涂层。在这些高温保护涂层中,经过广泛研究的耐用性问题中,近年来受到越来越多关注的一个关键挑战是由于燃料杂质和CMAS(钙-镁-铝硅酸盐)引起的腐蚀性沉积物,它们对高温降解的抵抗力)空气摄入引起的沙子沉积。代用燃料中钒,硫,磷,钠和钙杂质的存在,保证了对燃料柔性燃气轮机发动机开发中高温材料降解的清楚认识。对于在充满灰尘的环境中运行的燃气轮机组件而言,由于CMAS引起的降解是一个关键问题。在这项研究中,由于侵蚀性沉积物(例如V2O5,P2O 5,Na2SO4,NaVO3,CaSO4)和实验室合成的CMAS砂(用于独立式等离子喷涂(APS)氧化钇稳定的氧化锆(YSZ))而导致的高温降解检查TBC系统的涂层和APS CoNiCrAlY,TBC系统的粘结涂层或独立的ORC。通过X射线衍射,扫描电子显微镜和透射电子显微镜检查了相变和微观结构的发展;该研究表明,V2O5熔体通过在747°C以下的温度下形成ZrV2O7和YVO 4来降解APS YSZ。分别高于747°C。 YVO 4的形成导致Y 2 O 3稳定剂的消耗和YSZ向单斜ZrO2相的有害转化。 Na 2 SO 4和Na 2 SO 4 + V 2 O 5混合物(50-50 mol。%)对YSZ降解的研究表明,Na2SO4本身并未降解YSZ,但是,在V2O 5存在下,Na2SO4形成了钒酸盐,例如NaVO3,通过在低至700°C的温度下形成YVO4来降解YSZ。通过在所有温度下形成ZrP2O7,发现APS YSZ与P2O 5熔体反应。这种相互作用导致YSZ中ZrO2的耗尽(即t'-YSZ中Y2O3的富集)并促进了萤石立方ZrO2相的形成。高于1250°C,观察到CMAS沉积物易于通过热化学相互作用渗透并显着溶解YSZ涂层。冷却后,氧化锆以球形形态和取决于局部熔融化学的成分重新沉淀。熔化的CMAS侵蚀通过有害的相变(t'→t→f + m)破坏了YSZ的稳定性。独立式APS CoNiCrAlY也易于被腐蚀的熔融沉积物降解。 V2O5熔体通过各种反应(包括保护性氧化皮的酸性溶解)使APS CoNiCrAlY降解,从而生成取代固溶体钒酸盐,例如(Co,Ni)3(VO4)2和(Cr,Al)VO4。另一方面,发现熔融的P 2 O 5通过形成富Ni / Co的磷酸盐和富Cr / Al的磷酸盐的反应而显着消耗了粘结涂层成分。在封装中进行测试时,诸如Na2SO 4之类的硫酸盐沉积物会通过I型酸性助熔剂在1000°C下的热腐蚀机制破坏CoNiCrAlY,从而导致加速的氧化和硫化作用。通过预氧化处理形成的保护性连续Al 2O3氧化皮,显着延迟了硫酸盐对CoNiCrAlY的热腐蚀。但是,喷涂和预氧化条件下的CoNiCrAlY都通过一种基本的助熔机理(产生CaCrO4和CaAl2O4)受到CaSO4沉积物的严重破坏。 CMAS熔体通过形成钙长石片状和尖晶石氧化物也溶解了在CoNiCrAlY上形成的保护性Al2O3氧化物垢;;基于对各种腐蚀沉积物降解APS YSZ和CoNiCrAlY的详细研究,进行了尝试以减轻熔体的影响引起的存款攻击。这项研究的实验结果首次证明,电泳沉积(EPD)产生的氧化物覆盖层可以有效地用作APS TBC的环境屏障覆盖层。 EPD保护性覆盖层具有均匀且易于控制的厚度,均匀分布的封闭孔和定制的化学物质。 EPD Al2O3和MgO覆盖层分别成功地保护了APS YSZ TBC免受CMAS侵蚀和热腐蚀侵蚀(例如,硫酸盐和钒酸盐)。在粘结涂层的高温合金上对覆盖层改性的TBC进行的炉子热循环氧化测试还表明,EPD Al2O3覆盖层具有良好的粘合耐久性。

著录项

  • 作者

    Mohan, Prabhakar.;

  • 作者单位

    University of Central Florida.;

  • 授予单位 University of Central Florida.;
  • 学科 Engineering Mechanical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 245 p.
  • 总页数 245
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号