首页> 外文学位 >Sorption and desorption of synthetic organic chemicals (SOCs) to macromolecule-loaded porous adsorbents.
【24h】

Sorption and desorption of synthetic organic chemicals (SOCs) to macromolecule-loaded porous adsorbents.

机译:合成有机化学物质(SOC)吸附和解吸到大分子负载的多孔吸附剂上。

获取原文
获取原文并翻译 | 示例

摘要

In this research, sorption/desorption and desorption hysteresis of synthetic organic chemicals (SOCs) were investigated using various macromolecule-loaded porous media. Such composite materials were synthetic sorbents that can be well-characterized, offer the potential for controlled properties, and can be designed to serve as model soils and sediments.;All of tested polyelectrolytes, four types of HA, and a PSS mixture (1.8 kDa, 18 kDa and 100 kDa monodisperse PSS standards) as model NOM showed preferential adsorption of lower molecular weight (Mw) components to alumina mesopores due to size exclusion and slow adsorption kinetics of higher M w components. The adsorption of purified Aldrich humic acid (PAHA) to silica pores showed similar trends with size exclusion of higher Mw components but was not favorable due to electrostatic repulsion between PAHA and silica surface under neutral pH conditions. PAHA adsorption to non-porous alumina and macro-porous AAMs was opposite to the case of adsorption to porous alumina, showing preferential adsorption of higher Mw components. It was found that PAHA adsorption to porous inorganic substrates was governed by a ratio between the hydrodynamic size (radius of gyration, Rg) of PAHA and the size of pores (radius of pore, Rp). PAHA was separated into 6 fractions (1, 2, 4, 6, 12, 43 kDa) using SEC techniques.;The Freundlich model and the dual-mode model (i.e., a combination of hole-filling and solid phase dissolution) described well phenanthrene sorption to PS (i.e., microg-phenanthrene/mg-PS, phenanthrene uptake normalized by PS loading,) which is loaded in porous silicas with various pore sizes. The characteristics of phenanthrene sorption to PS representd by the Freundlich isotherm model parameters (n and KF) and the ratio of hole-filling to solid phase dissolution (Q°b/K d) of dual-mode model fitting changed depending on the R g (PS size)/Rp (silica pore size) ratios of PS-loaded porous silicas.;Phenanthrene sorption to PAHA (i.e., microg-phenanthrene/mg-C (PAHA), phenanthrene uptake normalized by PAHA loading) loaded in porous aluminas (PAs) and non-porous aluminas (NPAs) decreased with increasing PAHA adsorption/loading density (PAD) (mg-C/m2-adsorbent). This observation was attributed to low phenanthrene accessibility to the entire PAHA adsorbed on PAs and NPAs under higher PAD conditions. In general, the Freunlich isotherm parameter "n" values for phenanthrene sorption to PAHA loaded in PAs were lower than those for PAHA loaded in NPAs. In both cases of PAHA-loaded PAs and NPAs, phenanthrene sorption isotherms were linear or near-linear.;Phenanthrene uptake by TMK NOM-loaded SWNTs was lower than that by SWNTs without TMK NOM loading. This obervation was opposite to the cases of macromolecule (e.g., PS, PAHA)-loaded (hydrophilic) silicas and aluminas, which showed higher phenanthrene uptake by macromolecule-loaded adsorbents than neat adsorbents. Chemical treatments of SWNTs using the Peroxone advanced oxidation process (AOP) (i.e., simultaneous treatment by ozone (O3) and hydrogen peroxide (H2O2)) also decreased phenanthrene uptake by SWNTs. Gas phase nitrogen (N2) adsorption analysis indicated that TMK NOM loading and Peroxone AOP treatments reduced the BET (Brunauer, Emmett, and Teller) specific surface area and pore volume of SWNTs. For Peroxone AOP-treated SWNTs, amorphous carbon increased as evidenced by increase in Raman D/G (D-band/G-band) ratio. The introduction of heterooxygen moieties by Peroxone AOP treatments, verified by FT-IR (Fourier transform infrared spectroscopy) spectra, was attributed to lower phenanthrene uptake.;The association of NOM with hydrophilic/hydrophobic and porous/non-porous adsorbents (e.g., silica, alumina, SWNTs, and activated carbon) and nano-sized silica particles changed Tg of NOM. Such observation was (i) similar to the case of loaded/confined PS (i.e. synthetic macromolecule) in silica pores, of which Tg was different from that of bulk phase (particulate) PS; (ii) implied that the physical characteristics of NOM can be altered by association with the pores and surfaces of soils and sediments, which can affect sorption and desorption behaviors of SOCs released in the environment. (Abstract shortened by UMI.).
机译:在这项研究中,使用各种加载大分子的多孔介质研究了合成有机化学物质(SOC)的吸附/解吸和解吸滞后。此类复合材料是合成吸附剂,具有良好的特性,可提供受控特性的潜力,并可设计用作土壤和沉积物的模型。;所有测试的聚电解质,四种类型的HA和PSS混合物(1.8 kDa ,例如18 kDa和100 kDa单分散PSS标准样品)作为NOM模型,由于尺寸排阻和较高M w组分的缓慢吸附动力学,显示出较低分子量(Mw)组分优先吸附于氧化铝中孔。纯化的Aldrich腐殖酸(PAHA)在二氧化硅孔中的吸附表现出相似的趋势,但分子量较高的Mw组分被排除在外,但由于在中性pH条件下PAHA与二氧化硅表面之间的静电排斥,因此不利。 PAHA对无孔氧化铝和大孔AAM的吸附与对多孔氧化铝的吸附情况相反,表明优先吸附较高Mw组分。发现PAHA吸附到多孔无机基质上是由PAHA的流体动力学尺寸(回转半径,Rg)和孔的尺寸(孔隙半径,Rp)之间的比率决定的。使用SEC技术将PAHA分为6个部分(1、2、4、6、12、43 kDa)。Freundlich模型和双模模型(即,空穴填充和固相溶解的组合)描述得很好菲对PS的吸附(即,微克菲/ mg-PS,通过PS加载归一化的菲吸收),该PS加载在具有各种孔径的多孔二氧化硅中。 Freundlich等温模型参数(n和KF)表示菲对PS的吸附特性,并且双模模型拟合的孔填充与固相溶解比(Q°b / K d)随R g的变化而变化。负载PS的多孔二氧化硅的(PS尺寸)/ Rp(二氧化硅孔径)之比;负载在多孔氧化铝中的菲对PAHA的吸附(即微克菲/毫克C(PAHA),通过PAHA加载归一化的菲吸收)( PAs)和无孔氧化铝(NPA)随着PAHA吸附/负载密度(PAD)(mg-C / m2吸附剂)的增加而降低。该观察结果归因于在较高的PAD条件下菲吸附到PA和NPA上的整个PAHA的菲可及性较低。通常,菲吸附到PAs中的PAHA的菲吸附等温线参数“ n”值低于NPAs中的PAHA的菲吸附等温线参数“ n”值。在PAHA负载的PA和NPA两种情况下,菲的吸附等温线都是线性的或接近线性的; TMK NOM负载的SWNT吸收的菲比非TMK NOM负载的SWNT吸收的菲低。这种观察与载有大分子(例如,PS,PAHA)(亲水)的二氧化硅和氧化铝的情况相反,后者显示载有大分子的吸附剂比纯吸附剂吸收更高的菲。使用Peroxone高级氧化工艺(AOP)进行SWNT的化学处理(即同时用臭氧(O3)和过氧化氢(H2O2)处理)也减少了SWNT的菲吸收。气相氮(N2)吸附分析表明,TMK NOM负载和Peroxone AOP处理降低了SWNT的BET比表面积和孔体积。对于Peroxone AOP处理的SWNT,无定形碳增加,如拉曼D / G(D波段/ G波段)比增加所证明。通过FT-IR(傅里叶变换红外光谱)光谱验证了通过Peroxone AOP处理引入的杂氧部分归因于菲的吸收降低; NOM与亲水/疏水和多孔/无孔吸附剂(例如二氧化硅)的关联,氧化铝,单壁碳纳米管和活性炭)和纳米级二氧化硅颗粒改变了NOM的Tg。这样的观察结果(i)类似于在二氧化硅孔中负载/封闭的PS(即合成大分子)的情况,其Tg与本体相(颗粒)PS的Tg不同; (ii)暗示NOM的物理特性可以通过与土壤和沉积物的孔隙和表面的结合而改变,这可能会影响环境中释放的SOC的吸附和解吸行为。 (摘要由UMI缩短。)。

著录项

  • 作者

    Lim, Hyung-Nam.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Environmental engineering.;Materials science.;Environmental science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号