首页> 外文学位 >Co2 Hydration And Hydroxylation: The Origin of Carbonate Kinetic Isotope Effects
【24h】

Co2 Hydration And Hydroxylation: The Origin of Carbonate Kinetic Isotope Effects

机译:二氧化碳水合和羟基化:碳酸盐动力学同位素效应的起源

获取原文
获取原文并翻译 | 示例

摘要

Stable isotope ratios in carbonate minerals record the influence of several climatological and biogeochemical processes. This makes biogenic carbonates valuable inventories of climate proxy records, but also makes them challenging to interpret. Carbonate formation from carbon dioxide via the unequilibrated CO2 hydration and hydroxylation reactions is one process that may impact stable C, O and clumped C-O isotope ratios in carbonate minerals, particularly carbonate minerals formed by corals. This dissertation reports calculation of the isotopic influence of the CO2 hydration and hydroxylation reactions using computational chemistry models. Results are compared with observed isotopic trends in corals to determine whether these reactions are consistent with the observed vital effects in corals. Methodological considerations for the application of computational chemistry to the calculation of aqueous isotopic fractionation are reported.;We analyzed several computational chemistry schemes for their ability to predict gasphase isotope fractionation between CO2 and H 2O. We also tested their ability to predict several other experimentally observable properties and whether success predicting each property correlated with success predicting isotope fractionation. Only successful prediction of harmonic vibrational frequencies correlated with successful prediction of isotopic fractionation; neither energies nor bond distances are good indications of a model chemistry useful in calculation of isotopic fractionation. B3LYP and X3LYP coupled with Pople triple-zeta basis sets were selected for application to fractionation in aqueous DIC species.;Stable C and O isotope partitioning constants were calculated for both equilibrium fractionation between aqueous CO2 and H2CO 3/HCO3 - and for kinetic fractionation during the CO2 hydration and hydroxylation reactions. Predicted equilibrium fractionation agrees well with experimentally determined values. The CO 2 hydration reaction is predicted to discriminate against both 13C and 18O by 10-11‰, while the CO2 hydroxylation reaction is predicted to discriminate against 13C by 13-16‰ and against 18O by 19-21‰. When calculating aqueous fractionation factors, it was necessary to analyze the H-bonding environment and interpolate to the expected H-bond environment experienced by each aqueous species, as individual H-bonds were found to have substantial effects on equilibrium and kinetic isotope fractionations, often of magnitude >1‰ and occasionally of magnitude >3‰ absolute deviation in predicted fractionation factor. H-bonds to hydroxyl groups from H2O always reduced the amount of 13 C and 18O entering reaction products, while other H-bonds increased the amount of 13C and 18O entering reaction products when effects were statistically significant, except for H-bonds from attacking OH- during CO2 hydroxylation. Fractionation during CO2 hydration and hydroxylation is able to explain most but not all of the isotope disequilibrium observed in the skeletons of shallow-water corals.;Isotope clumping between 13C and 18O was calculated during the CO2 hydration and hydroxylation reactions. When accounting for H-bond environment, hydration and hydroxylation increase clumping in product carbonates by 0.10‰ and 0.12‰ respectively. These results are consistent with the increased clumping observed in some shallow-water corals relative to other carbonates. All H-bonds are predicted to decrease the clumping in product carbonates except for H-bonds from water to an attacking OH- during CO2 hydroxylation. H-bond effects on clumping and single stable isotope fractionation are not consistent with a simple model of stiffer bonds favoring incorporation of both heavy isotopes and clumped isotopologues.;Formation of transient carbonate precursor phases may also affect the isotopic composition of coral skeletons and other biogenic carbonates; however, isotopic compositions of these precursor phases are currently unknown. Synthesized amorphous calcium carbonate (ACC) observed under XRD, FTIR, and Raman bears similar structural features with biogenic stable and transient ACC, depending on concentration of metasilicate stabilizer used. The isotopic composition of ACC is affected by Ca2+ and CO3 2- concentrations in a manner different than calcite. The isotopic composition of ACC is unlikely to explain the anomalous isotopic composition observed in coral calcification centers.
机译:碳酸盐矿物中稳定的同位素比记录了几种气候和生物地球化学过程的影响。这使生物成因碳酸盐成为气候代用记录的宝贵清单,但也使它们难以解释。通过二氧化碳的不平衡水合和羟基化反应从二氧化碳中形成碳酸盐是一种可能影响碳酸盐矿物(尤其是由珊瑚形成的碳酸盐矿物)中稳定的C,O和成簇的C-O同位素比的过程。本文利用计算化学模型报道了CO 2水合和羟基化反应的同位素影响的计算。将结果与珊瑚中观察到的同位素趋势进行比较,以确定这些反应是否与珊瑚中观察到的生命效应相一致。报道了将计算化学应用于水同位素分馏中的方法学考虑。我们分析了几种计算化学方案预测CO2和H 2O之间气相同位素分馏的能力。我们还测试了他们预测其他几个实验可观察特性的能力,以及预测每个特性的成功与预测同位素分级的成功是否相关。只有谐波振动频率的成功预测与同位素分馏的成功预测相关。能量和键距都不能很好地表明模型化学可用于同位素分馏的计算。选择B3LYP和X3LYP结合Pople三重Zeta基集用于在DIC水溶液中进行分馏;计算出稳定的C和O同位素分配常数,用于在CO2和H2CO 3 / HCO3水溶液之间进行平衡分馏-并在过程中进行动力学分馏CO2水合和羟基化反应。预测的平衡分馏与实验确定的值非常吻合。预计CO 2水合反应可与13C和18O区分10-11‰,而CO2羟基化反应可与13C和13O区分19-16‰。在计算水相分离因子时,有必要分析氢键环境并将其插值到每种水族经历的预期氢键环境,因为发现单个氢键通常会对平衡和动力学同位素分离产生重大影响。预测分馏因子的绝对偏差大于1‰,偶尔大于3‰。从H2O与羟基键合的H键总是会减少进入反应产物的13 C和18O的数量,而其他H键会增加13C和18O进入反应产物的数量,当效果具有统计学意义时,除了攻击OH的H键-在二氧化碳羟化过程中。 CO2水合和羟基化过程中的分馏能够解释大部分但不是全部的浅水珊瑚骨骼中观察到的同位素不平衡现象。在CO2水合和羟基化反应过程中计算出13C和18O之间的同位素聚集。当考虑氢键环境时,水合和羟基化分别使产物碳酸盐中的结块增加0.10‰和0.12‰。这些结果与某些浅水珊瑚相对于其他碳酸盐所观察到的结块增加是一致的。预测所有H键会减少产物碳酸盐中的结块,但在CO2羟基化过程中,从水到OH-进攻级的H键除外。氢键对团聚和单一稳定同位素分馏的影响与支持结合重同位素和团聚同位素的刚性键的简单模型不一致;瞬态碳酸盐前体相的形成也可能影响珊瑚骨架和其他生物成因的同位素组成碳酸盐然而,目前尚不清楚这些前体相的同位素组成。在XRD,FTIR和Raman下观察到的合成无定形碳酸钙(ACC)具有相似的结构特征,具有生物稳定的和短暂的ACC,这取决于所用的偏硅酸盐稳定剂的浓度。 ACC的同位素组成受方解石不同的方式受Ca2 +和CO3 2-浓度的影响。 ACC的同位素组成不可能解释在珊瑚钙化中心观察到的异常同位素组成。

著录项

  • 作者

    Boettger, Jason.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Geochemistry.;Chemistry.;Biogeochemistry.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 273 p.
  • 总页数 273
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号