首页> 外文学位 >Developments in Design of Experiments and Reliability-Based Design Optimization Using Saddlepoint Approximation
【24h】

Developments in Design of Experiments and Reliability-Based Design Optimization Using Saddlepoint Approximation

机译:实验设计的发展和基于鞍点逼近的基于可靠性的设计优化

获取原文
获取原文并翻译 | 示例

摘要

Computational optimization plays an important role in engineering design, leading to greatly improved performance. Deterministic optimization, however, can result in undesired choices because it neglects uncertainty. Reliability-Based Design Optimization (RBDO) can provide optimum designs in the presence of uncertainties. The traditional double-loop RBDO approach based on First-Order Reliability Method (FORM) may be inaccurate, since it requires transformation from non-normal random variable space to standard normal variable space which, in certain circumstances, increases the nonlinearity of the limit state function(s). FORM may also be inefficient, because an iterative search process for the Most Probable Point (MPP) is required, resulting in a costly double-loop optimization algorithm. An RBDO with Mean Value First Order Saddlepoint Approximation (MVFOSA) algorithm is proposed with enhanced accuracy and almost the same efficiency with deterministic optimization. MVFOSA estimates the Probability Density Function (PDF) and the Cumulative Distribution Function (CDF) of the response using an accurate Saddlepoint Approximation (SA). The limit state function is approximated using a first order Taylor series expansion at the mean values of the random input variables. MVFOSA is more accurate than FORM, because there is no transformation from non-normal to normal random variables and the iterative search process for the MPP is avoided. Examples demonstrate the proposed methodology. The extension to MVSOSA (Mean Value First Order Saddlepoint Approximation), based on a second order Taylor expansion is also proposed, in order to further increase the accuracy of the computed probability density functions, retaining the high efficiency by calculating the required Hessian matrix using quasi-second order saddlepoint approximation.;Real life problems usually exhibit a multidimensional and multimodal behavior requiring a global optimization approach which is computationally inefficient. We propose a Design of Experiments (DOE) algorithm, which constructs optimal space filling designs in many dimensions with good projective properties. The algorithm also creates DOE groups with space filling properties and unions of these groups also retain space filling properties. The DOEs are obtained without optimization, improving computational efficiency. The proposed DOE algorithm can be used to create accurate metamodels (model(s) of an original model) sequentially and efficiently. Examples illustrate the concepts and demonstrate the applicability of the proposed method. We combine the DOE algorithm and MVSOSA methods into an integrated RBDO algorithm. The objective is to use MVFOSA and MVSOSA for black-box optimization problems by replacing the computation of first and second-order derivatives with a quadratic response surface, trained on design sites defined by the proposed DOE.;The final step of this research was the development of a second-order Saddlepoint (SA) method for reliability analysis. The Advanced Mean-Value Second-Order Saddlepoint Approximation (AMVSOSA) is proposed as an extension to the Mean-Value Second-Order Saddlepoint Approximation (MVSOSA). The proposed method is based on a second-order Taylor expansion of the limit state function around an approximate Most Probable Point (MPP) computed using a Mean-Value First-Order Second-Moment (MVFOSM) approach rather than the mean value of the random parameters as in MVSOSA.
机译:计算优化在工程设计中起着重要作用,从而大大提高了性能。但是,确定性优化会导致不必要的选择,因为它会忽略不确定性。基于可靠性的设计优化(RBDO)可以在存在不确定性的情况下提供最佳设计。基于一阶可靠性方法(FORM)的传统双环RBDO方法可能不准确,因为它需要从非正常随机变量空间转换为标准正常变量空间,这在某些情况下会增加极限状态的非线性功能)。 FORM也可能效率不高,因为需要针对最可能点(MPP)进行迭代搜索过程,从而导致代价高昂的双循环优化算法。提出了一种具有均值一阶鞍点逼近(MVFOSA)算法的RBDO,该算法具有更高的准确性,并且在确定性优化方面具有几乎相同的效率。 MVFOSA使用准确的鞍点近似值(SA)估算响应的概率密度函数(PDF)和累积分布函数(CDF)。在随机输入变量的平均值处使用一阶泰勒级数展开来近似极限状态函数。 MVFOSA比FORM更准确,因为它没有从非正常随机变量到正常随机变量的转换,并且避免了MPP的迭代搜索过程。实例说明了所提出的方法。还提出了基于二阶泰勒展开式对MVSOSA(均值一阶鞍点逼近)的扩展,以进一步提高计算出的概率密度函数的准确性,并通过使用拟量计算所需的Hessian矩阵来保持高效率。二阶鞍点逼近;现实生活中的问题通常表现出多维和多模态的行为,需要使用全局最优化方法,这在计算上效率低下。我们提出了一种实验设计(DOE)算法,该算法可构建具有良好投射特性的多个维度的最佳空间填充设计。该算法还会创建具有空间填充属性的DOE组,并且这些组的并集也保留空间填充属性。无需优化即可获得DOE,从而提高了计算效率。提出的DOE算法可用于顺序有效地创建准确的元模型(原始模型的模型)。实例说明了这些概念并证明了所提出方法的适用性。我们将DOE算法和MVSOSA方法合并为一个集成的RBDO算法。目的是将MVFOSA和MVSOSA用于黑盒优化问题,方法是用二次响应面代替一阶和二阶导数的计算,并在拟议的DOE定义的设计位置进行训练。开发用于可靠性分析的二阶Saddlepoint(SA)方法。提出了高级均值二阶鞍点逼近(AMVSOSA)作为对均值二阶鞍点逼近(MVSOSA)的扩展。所提出的方法基于极限状态函数的二阶泰勒展开式,该极限态函数围绕使用均值一阶第二阶矩(MVFOSM)方法计算的近似最可能点(MPP)而不是随机数的均值MVSOSA中的参数。

著录项

  • 作者

    Panagiotopoulos, Dionysios.;

  • 作者单位

    Oakland University.;

  • 授予单位 Oakland University.;
  • 学科 Mechanical engineering.;Engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 228 p.
  • 总页数 228
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号