首页> 外文学位 >Advanced Nanofabrication of Carbon-based Materials with Superior Electrical Properties
【24h】

Advanced Nanofabrication of Carbon-based Materials with Superior Electrical Properties

机译:具有优异电性能的碳基材料的高级纳米加工

获取原文
获取原文并翻译 | 示例

摘要

This document presents a number of nonconventional fabrication/processing techniques developed for the integration of the emerging carbon-based nanomaterials, including carbon nanotubes (CNTs) and graphene, and realization of their superior properties, thereby addressing some of the fundamental challenges in industrial applications. According to recent studies, CNTs possess extraordinary properties that make them promising candidates for improving the performance of a wide range of industrial applications. However, practical realization of these properties and the integration of the carbon-based nanomaterials through conventional fabrication methods has proven to be challenging in terms of quality control, reproducibility, and cost effectiveness.;To address these challenges, this dissertation proposes the development and implementation of scalable, cost-effective processing approaches to the integration of carbon-based nanomaterials into industrial applications. The following research topics are covered in this dissertation: 1) suppression of the eddy current loss in laser-processed multi-walled carbon nanotube (MWCNT)-coated copper (Cu) conductors, 2) neutralization of electrical arcing in CNT-implanted rails, and 3) ultralow contact resistance in graphene-based devices via laser-assisted nanowelding.;Successful suppression of ac resistance of up to 94% was realized in MWCNT-coated copper (MWCNT-Cu) planar conductors at high operational frequencies (0-15 MHz) through electrophoretic deposition and infrared laser treatment of MWCNT coatings on Cu. In addition, this scalable method was used to reduce the eddy current loss and increase the transmission range in wireless power transfer (WPT) systems. The quality factor of the MWCNT-Cu coils increased by fourfold compared to their metallic counterparts, thereby leading to transmission efficiencies as high as 95.81% at f = 3.45 MHz.;A scalable laser drilling/MWCNT implantation method was also developed to neutralize the destructive electrical arcing in third-rail systems. The highly conductive MWCNT composite in the microholes was observed to weaken and divide the arcing current density into harmless magnitudes, thereby minimizing the arc-induced surface damage.;Finally, a contact-free, position-selective, and accurate laser-assisted nanowelding technique was developed to reduce the graphene-metal (G-M) contact resistance, leading to values as low as 2.57 O-mum. This was achieved through formation of laser-induced defects in order to increase the chemical reactivity of graphene and facilitate the G-M bonding, thereby maximizing the interfacial transportation.
机译:本文介绍了许多非常规的制造/加工技术,这些技术是为整合新兴的基于碳的纳米材料(包括碳纳米管(CNT)和石墨烯)并实现其卓越性能而开发的,从而解决了工业应用中的一些基本挑战。根据最近的研究,CNT具有非凡的性能,使其成为有望改善多种工业应用性能的有前途的候选者。然而,通过传统的制造方法实际实现这些特性以及集成碳基纳米材料在质量控制,可重复性和成本效益方面都面临着挑战。为解决这些挑战,本论文提出了开发和实施方法。可伸缩,经济高效的加工方法将碳基纳米材料集成到工业应用中。本论文涵盖以下研究主题:1)抑制激光加工的多壁碳纳米管(MWCNT)涂覆的铜(Cu)导体中的涡流损耗,2)中和CNT注入轨道中的电弧, 3)通过激光辅助纳米焊接在石墨烯基器件中实现超低接触电阻。;在高工作频率下(0-15)MWCNT包覆的铜(MWCNT-Cu)平面导体成功实现了高达94%的交流电阻抑制通过电泳沉积和红外激光处理Cu上的MWCNT涂层。此外,这种可扩展的方法还用于减少涡流损耗并增加无线电力传输(WPT)系统中的传输范围。 MWCNT-Cu线圈的品质因数比金属线圈高四倍,从而导致在f = 3.45 MHz时传输效率高达95.81%。;还开发了可扩展的激光钻孔/ MWCNT注入方法来抵消破坏性因素第三轨系统中的电弧。观察到微孔中高导电性的MWCNT复合材料会减弱电弧电流密度并将其划分为无害的幅度,从而将电弧引起的表面损伤最小化。最后,采用无接触,位置选择和精确的激光辅助纳米焊接技术开发出用于降低石墨烯-金属(GM)接触电阻的方法,其值可低至2.57 O-um。这是通过形成激光诱导的缺陷来实现的,以增加石墨烯的化学反应性并促进G-M键合,从而最大程度地实现界面迁移。

著录项

  • 作者

    Keramatnejad, Kamran.;

  • 作者单位

    The University of Nebraska - Lincoln.;

  • 授予单位 The University of Nebraska - Lincoln.;
  • 学科 Nanotechnology.;Optics.;Electrical engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 160 p.
  • 总页数 160
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号