首页> 外文学位 >Design, synthesis, and optimization of nanostructured calcium phosphates (NanoCaPs) and natural polymer based 3-D non-viral gene delivery systems.
【24h】

Design, synthesis, and optimization of nanostructured calcium phosphates (NanoCaPs) and natural polymer based 3-D non-viral gene delivery systems.

机译:设计,合成和优化基于纳米结构的磷酸钙(NanoCaP)和基于天然聚合物的3-D非病毒基因递送系统。

获取原文
获取原文并翻译 | 示例

摘要

Sustained delivery of therapeutic genes from a three-dimensional (3-D) scaffold and subsequent gene expression capable of triggering the regeneration of damaged tissues is a tissue engineering strategy that has been gaining increased attention. Nanostructured calcium phosphates (NanoCaPs) are biocompatible and non-toxic biomaterials. Furthermore, their efficient transfection in vitro have rendered them attractive gene delivery carriers compared to other viral- or lipid-based agents that tend to be immunogenic or cytotoxic, leading to undesirable responses when utilized above a critical threshold. However, NanoCaPs are typically characterized by variable transfection and short shelf life due to particle aggregation. A viable solution to this problem is the incorporation of NanoCaPs into 3-D scaffolds. The main objectives of this research are therefore two-fold: (1) Examination of the potential of achieving optimized transfection of NanoCaPs via anionic substitution and (2) high throughput synthesis and screening of non-viral gene delivery systems (GDS) comprised of naturally-derived polymers as scaffolds containing NanoCaPs gene carriers.;Results indicated that in addition to the excellent transfection levels exhibited by NanoCaPs in vitro, an additional 20-30% increase was observed for NanoCaPs with 10-25 mol% anion substitution. In contrast, high anion substitution (>60%) yielded a drastic decline in transfection. Structural characterizations verified successful anion substitution with a noticeable increase in lattice parameters indicative of an expanded unit cell due to ionic substitution. All of the anion substituted calcium phosphates exhibited the primary phase of hydroxyapatite.;For the first time, GDS composed of various concentrations of alginate (AA), fibronectin (FN), and NanoCaPs-DNA complexes were demonstrated. The presence of AA and FN was effective in immobilizing NanoCaPs and reducing the aggregation. High throughput synthesis and screening experiments showed excellent cell proliferation in the presence of AA, and the incorporation of FN improved cell attachment on AA. Moreover, AA-based GDS showed optimized transfection following 3 weeks of storage, extending the shelf life of NanoCaPs.;Also for the first time, GDS composed of various concentrations of fibrin (F), gelatin (G), and NanoCaPs-DNA complexes were demonstrated. The presence of F and G also resulted in the uniform immobilization and distribution of NanoCaPs, reducing the aggregation. It was also established that the concentration as well as the ratio of F and G played a significant role in ultimately determining the transfection. Both luciferase and green fluorescent protein (GFP) transfection revealed a two-step release mechanism, with an early burst release upon the dissolution of G followed by a subsequent delayed and sustained release corresponding to the degradation of F. This composite GDS can therefore be tailored to achieve optimal gene transfection, rendering it viable for various therapeutic applications.
机译:从三维(3-D)支架持续递送治疗基因以及随后能够触发受损组织再生的基因表达是一种组织工程学策略,已引起越来越多的关注。纳米结构的磷酸钙(NanoCaPs)是生物相容性和无毒的生物材料。此外,与其他倾向于具有免疫原性或细胞毒性的基于病毒或脂质的试剂相比,它们在体外的有效转染使它们成为有吸引力的基因传递载体,当在临界阈值以上使用时,会导致不良反应。然而,由于颗粒聚集,NanoCaPs的典型特征是可变的转染和较短的保存期限。解决此问题的可行方法是将NanoCaP整合到3-D支架中。因此,这项研究的主要目标是双重的:(1)检查通过阴离子取代实现NanoCaPs优化转染的潜力,以及(2)高通量合成和非天然基因组成的非病毒基因递送系统(GDS)的筛选衍生的聚合物作为包含NanoCaPs基因载体的支架。结果表明,除了在体外NanoCaPs表现出优异的转染水平外,对于具有10-25 mol%阴离子取代的NanoCaPs,还观察到了另外20-30%的增加。相反,高阴离子取代度(> 60%)导致转染急剧下降。结构表征验证了阴离子取代成功,晶格参数显着增加,这表明由于离子取代导致晶胞膨胀。所有阴离子取代的磷酸钙均表现出羟基磷灰石的主要相。首次证明了由各种浓度的藻酸盐(AA),纤连蛋白(FN)和NanoCaPs-DNA复合物组成的GDS。 AA和FN的存在可有效固定NanoCaP并减少聚集。高通量合成和筛选实验显示,在AA存在下,细胞具有出色的增殖能力,而FN的掺入可改善AA上的细胞附着。此外,基于AA的GDS在储存3周后显示出优化的转染效果,延长了NanoCaP的保质期。此外,GDS首次由各种浓度的纤维蛋白(F),明胶(G)和NanoCaPs-DNA复合物组成被证明。 F和G的存在还导致NanoCaP的均匀固定和分布,从而减少了聚集。还确定了F和G的浓度以及比例在最终确定转染中起重要作用。萤光素酶和绿色荧光蛋白(GFP)转染均显示了两步释放机制,在G溶解后会先释放出突释,随后再发生与F降解相对应的延迟和持续释放。因此,可以定制此复合GDS以获得最佳的基因转染,使其可用于各种治疗应用。

著录项

  • 作者

    Ko, Hsu-Feng.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Engineering Biomedical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 284 p.
  • 总页数 284
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号