首页> 外文学位 >Strain-Sensing Smart Skin for Structural Health Monitoring
【24h】

Strain-Sensing Smart Skin for Structural Health Monitoring

机译:应变感应智能皮肤,用于结构健康监测

获取原文
获取原文并翻译 | 示例

摘要

Over the past twenty years, many structural health monitoring strategies and damage detection techniques/methods have been proposed. Traditional technologies used for measuring strain, such as resistance strain gages, can monitor only at discrete locations and along specific directions, and have limited ability to measure strains on small length scales. Optical fiber sensors and more specifically fiber Bragg grating (FBG) sensors are also widely used in health monitoring of structures, offering strain and temperature readings. However, practical issues, such as deployment of the optical fibre to the structure and connectors and the high cost of the FBGs, need to be addressed. Some emerging full-filed non-contact strain sensing techniques, such as interferometric techniques, non-interferometric techniques and Raman spectroscopy techniques, have other limitations. A non-contact, full-filed strain sensing technique is needed to perform fast Structural Health Monitoring on structures. In this thesis, three generations of a novel non-contact strain measurement technology is developed using raw HiPco single-walled carbon nanotubes (SWCNTs) and different polymers. This approach exploits the characteristic short-wave infrared fluorescence signatures of semiconducting SWCNTs and the systematic shifts of their fluorescence wavelengths when the nanotubes are axially strained. A strain-sensing smart skin (S4) is prepared by coating the surface to be monitored with a thin polymeric film containing well dispersed SWCNTs. Strain in the substrate is transmitted through the polymer to the nanotubes, causing systematic and predictable spectral shifts of the nanotube near-infrared fluorescence peak wavelengths. This promising new method should allow quick and precise strain measurements at any position and along any direction of the substrate. The developed S4 technology has also been applied on pre-damaged specimens to perform 2D strain sensing and damage identification.
机译:在过去的二十年中,已经提出了许多结构健康监测策略和损伤检测技术/方法。用于测量应变的传统技术(例如电阻应变计)只能在离散位置和沿特定方向进行监视,并且在小长度标度上测量应变的能力有限。光纤传感器,更具体地说是光纤布拉格光栅(FBG)传感器,也广泛用于结构的健康监测,提供应变和温度读数。但是,需要解决实际问题,例如将光纤部署到结构和连接器以及FBG的高成本。一些新兴的完整的非接触式应变传感技术,例如干涉测量技术,非干涉测量技术和拉曼光谱技术,还有其他局限性。需要一种非接触式,完整的应变感应技术来对结构执行快速的结构健康监测。本文利用原始的HiPco单壁碳纳米管(SWCNT)和不同的聚合物开发了三代新型非接触应变测量技术。这种方法利用了半导体SWCNT的特征性短波红外荧光特征,以及当纳米管受到轴向应变时其荧光波长的系统性移动。通过用包含良好分散的SWCNT的聚合物薄膜涂覆要监测的表面来制备应变感应智能皮肤(S4)。衬底中的应变通过聚合物传输到纳米管,从而导致纳米管近红外荧光峰波长发生系统且可预测的光谱偏移。这种有前途的新方法应该可以在基板的任何位置和任何方向上进行快速,精确的应变测量。先进的S4技术也已应用于预先损坏的标本,以执行2D应变传感和损伤识别。

著录项

  • 作者

    Sun, Peng Patrick.;

  • 作者单位

    Rice University.;

  • 授予单位 Rice University.;
  • 学科 Civil engineering.;Materials science.;Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号