首页> 外文学位 >Effect of pH on metal- and nanoparticle-microbe interactions.
【24h】

Effect of pH on metal- and nanoparticle-microbe interactions.

机译:pH对金属和纳米粒子与微生物相互作用的影响。

获取原文
获取原文并翻译 | 示例

摘要

Understanding metal-microbe interactions is essential in the study of biogeochemical transformations, microbial pathogenicity, and bioremediation applications. For this dissertation research we employed Burkholderia vietnamiensis PR1301 (PR1) as a model microbe to study the effects of pH on metal-microbe interactions. Initially PR1 was used to evaluate ZnO-nanoparticle (NP) toxicity with ZnCl2 as a reference toxicant using different cytotoxicity assays. These results demonstrated that ZnO-NP and ZnCl2 exhibit similar toxicities and both are more toxic at pH 7 than at pH 6. During these investigations we observed that PR1 produces membrane vesicles (MVs), which are 50 to 250 nm structures derived from the outer-membrane commonly produced by Gram-negative bacteria. At pH 7, when Zn2+ is 16-fold more toxic to PR1 than at pH 5, MV production was also two-fold greater, while at both pHs MV production was inversely related to Zn concentration. Most research to date has focused on the role of MVs in bacterial pathogenicity while their potential role in metal-microbe interactions has been largely overlooked. Due to their size, prevalence, and multifarious nature, the involvement of MVs in metal-microbe interactions was further investigated. First we demonstrated that MVs at physiological concentrations do not increase or decrease Zn2+ toxicity to PR1. Next, we demonstrated that MVs produced at pH 5 and 7 have different surface chemistries and that MVs from pH 7 are able to sorb greater quantities of Zn2+. Lastly, the formation and function of MVs at each pH was evaluated using molecular techniques, including proteomics. In addition to pH affecting MV production, pH also affected the nucleic acid, Fe and Zn concentration, and protein composition of MVs. There were 203 shared proteins at each pH and their identity indicates that, in addition to known MV functions, they might play a role in extracellular nutrient storage. Additionally, protein profiles predict that MVs produced at pH 5 would contain greater functional potential, including the ability to degrade organic contaminants. Overall, this research highlights not only the importance of pH in metal-microbe interactions, but also the involvement of MVs in metal-microbe interactions.
机译:在研究生物地球化学转化,微生物致病性和生物修复应用中,了解金属-微生物相互作用至关重要。在本论文研究中,我们以越南伯克霍尔德菌PR1301(PR1)为模型微生物,研究pH对金属-微生物相互作用的影响。最初,PR1用于评估ZnO-纳米颗粒(NP)的毒性,并使用不同的细胞毒性测定法将ZnCl2作为参考毒物。这些结果表明,ZnO-NP和ZnCl2具有相似的毒性,并且在pH 7时比在pH 6时更具毒性。在这些研究中,我们观察到PR1产生膜囊泡(MVs),它们是从外部产生的50至250 nm结构革兰氏阴性菌通常产生的β-膜。在pH 7时,当Zn2 +对PR1的毒性是在pH 5时的16倍时,MV的产量也增加了两倍,而在两个pH时,MV的产量与Zn浓度成反比。迄今为止,大多数研究都集中在MV在细菌致病性中的作用,而它们在金属-微生物相互作用中的潜在作用却被大大忽略了。由于它们的大小,患病率和种类繁多,因此进一步研究了MVs在金属-微生物相互作用中的参与。首先,我们证明了生理浓度的MV不会增加或减少Zn2 +对PR1的毒性。接下来,我们证明了在pH 5和7产生的MV具有不同的表面化学性质,并且pH 7产生的MV能够吸收更多的Zn2 +。最后,使用分子技术,包括蛋白质组学,评估了每个pH下MV的形成和功能。 pH除了影响MV的产生外,pH还影响MV的核酸,Fe和Zn浓度以及蛋白质组成。每个pH共有203种共享蛋白,它们的身份表明,除了已知的MV功能外,它们还可能在细胞外营养物存储中发挥作用。此外,蛋白质谱预测在pH 5时产生的MV将具有更大的功能潜能,包括降解有机污染物的能力。总体而言,这项研究不仅强调了pH在金属-微生物相互作用中的重要性,而且还强调了MVs在金属-微生物相互作用中的参与。

著录项

  • 作者

    Neely, Benjamin Adam.;

  • 作者单位

    Medical University of South Carolina.;

  • 授予单位 Medical University of South Carolina.;
  • 学科 Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 296 p.
  • 总页数 296
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号