首页> 外文学位 >Advanced Wide-Field Interferometric Microscopy for Nanoparticle Sensing and Characterization
【24h】

Advanced Wide-Field Interferometric Microscopy for Nanoparticle Sensing and Characterization

机译:用于纳米颗粒传感和表征的高级宽视场干涉显微镜

获取原文
获取原文并翻译 | 示例

摘要

Nanoparticles have a key role in today's biotechnological research owing to the rapid advancement of nanotechnology. While metallic, polymer, and semiconductor based artificial nanoparticles are widely used as labels or targeted drug delivery agents, labeled and label-free detection of natural nanoparticles promise new ways for viral diagnostics and therapeutic applications. The increasing impact of nanoparticles in bio- and nano-technology necessitates the development of advanced tools for their accurate detection and characterization.;Optical microscopy techniques have been an essential part of research for visualizing micron-scale particles. However, when it comes to the visualization of individual nano-scale particles, they have shown inadequate success due to the resolution and visibility limitations. Interferometric microscopy techniques have gained significant attention for providing means to overcome the nanoparticle visibility issue that is often the limiting factor in the imaging techniques based solely on the scattered light.;In this dissertation, we develop a rigorous physical model to simulate the single nanoparticle optical response in a common-path wide-field interferometric microscopy (WIM) system. While the fundamental elements of the model can be used to analyze nanoparticle response in any generic wide-field imaging systems, we focus on imaging with a layered substrate (common-path interferometer) where specular reflection of illumination provides the reference light for interferometry. A robust physical model is quintessential in realizing the full potential of an optical system, and throughout this dissertation, we make use of it to benchmark our experimental findings, investigate the utility of various optical configurations, reconstruct weakly scattering nanoparticle images, as well as to characterize and discriminate interferometric nanoparticle responses.;This study investigates the integration of advanced optical schemes in WIM with two main goals in mind: (i) increasing the visibility of low-index nanoscale particles via pupil function engineering, pushing the limit of sensitivity; (ii) improving the resolution of sub-diffraction-limited, low-index particle images in WIM via reconstruction strategies for shape and orientation information. We successfully demonstrate an overall ten-fold improvement in the visibility of the low-index sub-wavelength nanoparticles as well as up to two-fold extended spatial resolution of the interference-enhanced nanoparticle images.;We also systematically examine the key factors that determine the signal in WIM. These factors include the particle type, size, layered substrate design, defocus and nanoparticle polarizability. We use the physical model to demonstrate how these factors determine the signal levels, and demonstrate how the layered substrate can be designed to optimize the overall signal, while defocus scan can be used to maximize it, as well as its signature can be utilized for particle discrimination purposes for both dielectric particles and resonant metallic particles. We introduce a machine learning based particle characterization algorithm that relies on supervised learning from model. The particle characterization is limited to discrimination based on nanosphere size and type in the scope of this dissertation.
机译:由于纳米技术的迅速发展,纳米颗粒在当今的生物技术研究中起着关键作用。尽管基于金属,聚合物和半导体的人造纳米颗粒广泛用作标记或靶向药物递送剂,但天然纳米颗粒的标记和无标记检测有望为病毒诊断和治疗应用提供新方法。纳米颗粒在生物技术和纳米技术中的影响越来越大,因此需要开发先进的工具以对其进行准确的检测和表征。光学显微镜技术已成为可视化微米级颗粒的重要组成部分。但是,当涉及单个纳米级颗粒的可视化时,由于分辨率和可见性的限制,它们显示出不足的成功。干涉显微镜技术已经为提供克服纳米粒子可见性问题的手段而受到了广泛关注,而纳米粒子可见性问题通常是仅基于散射光的成像技术中的限制因素。本论文中,我们建立了严格的物理模型来模拟单个纳米粒子的光学特性。共路径广域干涉显微镜(WIM)系统中的响应。尽管该模型的基本要素可用于分析任何通用的广域成像系统中的纳米颗粒响应,但我们专注于使用分层基体(共径干涉仪)成像,其中照明的镜面反射为干涉测量提供了参考光。一个健壮的物理模型对于实现光学系统的全部潜力至关重要,在整个论文中,我们利用它来对我们的实验结果进行基准测试,研究各种光学结构的实用性,重建弱散射的纳米颗粒图像,以及这项研究调查了WIM中先进光学方案的集成,并牢记了两个主要目标:(i)通过瞳孔功能工程提高低折射率纳米级粒子的可见度,从而突破了灵敏度的极限; (ii)通过重构形状和方向信息的策略,提高WIM中亚衍射限制的低折射率粒子图像的分辨率。我们成功地证明了低折射率亚波长纳米颗粒的可见度总体提高了十倍,并且干扰增强纳米颗粒图像的空间分辨率最高提高了两倍。我们还系统地研究了确定WIM中的信号。这些因素包括颗粒类型,尺寸,层状基材设计,散焦和纳米颗粒极化率。我们使用物理模型来演示这些因素如何确定信号电平,并演示如何设计分层基板以优化整体信号,同时可以使用散焦扫描来最大化其整体信号,以及可以将其签名用于粒子区分介电粒子和共振金属粒子。我们介绍了一种基于机器学习的粒子表征算法,该算法依赖于模型的监督学习。在本文的范围内,颗粒表征仅限于基于纳米球尺寸和类型的区分。

著录项

  • 作者

    Avci, Oguzhan.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Electrical engineering.;Optics.;Physics.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号