首页> 外文学位 >Exploring Controlled Drug Release from Magneto Liposomes
【24h】

Exploring Controlled Drug Release from Magneto Liposomes

机译:探索从磁脂质体释放的药物

获取原文
获取原文并翻译 | 示例

摘要

This thesis focuses on exploring fast and controlled drug release from several liposomal drug delivery systems including its underlying mechanics. In addition, the construction of a pulsed high-voltage rotating electromagnet is demonstrated based on a nested Helmholtz coil design. Although lots of different drug delivery mechanisms can be used, fast drug delivery is very important to utilize drug molecules that are short-lived under physiological conditions. Techniques that can release model molecules under physiological conditions could play an important role to discover the pharmacokinetics of short-lived substances in the body. In this thesis, an experimental method is developed for the fast release of the liposomes' payload without a significant increase in (local) temperatures. This goal is achieved by using short magnetic pulses to disrupt the lipid bilayer of liposomes loaded with magnetic nanoparticles.;This thesis also demonstrates that pulsed magnetic fields can generate ultrasound from colloidal superparamagnetic nanoparticles. Generating ultrasound remotely by means of magnetic fields is an important technological development to circumvent some of the drawbacks of the traditional means of ultrasound generation techniques. In this thesis, it is demonstrated that ultrasound is generated from colloidal superparamagnetic nanoparticles when exposed to pulsed and alternating magnetic fields. Furthermore, a comparison between inhomogeneous and homogeneous magnetic fields indicates that both homogeneous and inhomogeneous magnetic fields could be important for efficient ultrasound generation; however, the latter is more important for dilute colloidal dispersion of magnetic nanoparticles. In strong magnetic fields, the ultrasound generated from the colloidal magnetic nanoparticles shows reasonable agreement with the magnetostriction effect commonly observed for bulk ferromagnetic materials. At low magnetic fields, the colloidal magnetic nanoparticle dispersion produces considerable amount of ultrasound when exposed to a.c. magnetic fields in the 20?5000 kHz frequency range. It is expected that the ultrasound generated from magnetic nanoparticles will have applications toward the acoustic induction of bioeffects in cells and manipulating the permeability of biological membranes.
机译:本文的重点是探索从几种脂质体药物递送系统中快速释放和控制释放的药物,包括其潜在的机理。此外,还基于嵌套的亥姆霍兹线圈设计演示了脉冲高压旋转电磁体的构造。尽管可以使用许多不同的药物传递机制,但是快速药物传递对于利用在生理条件下寿命短的药物分子非常重要。在生理条件下可以释放模型分子的技术对于发现体内短寿命物质的药代动力学起着重要作用。在本文中,开发了一种实验方法来快速释放脂质体的有效载荷而不会显着提高(局部)温度。通过使用短的电磁脉冲破坏负载有磁性纳米颗粒的脂质体的脂质双层,可以达到这一目的。本论文还证明了脉冲磁场可以从胶体超顺磁性纳米颗粒中产生超声波。借助于磁场远程产生超声波是一项重要的技术发展,目的是规避传统超声波产生技术手段的某些弊端。在本文中,证明了当暴露于脉冲和交变磁场时,超声是由胶体超顺磁性纳米粒子产生的。此外,不均匀磁场和均匀磁场之间的比较表明,均匀磁场和不均匀磁场对于有效生成超声都可能很重要。然而,后者对于磁性纳米粒子的稀胶体分散更为重要。在强磁场中,由胶态磁性纳米粒子产生的超声波显示出与块状铁磁材料通常观察到的磁致伸缩效应合理的一致性。在低磁场下,胶体磁性纳米颗粒分散液在暴露于交流电时会产生大量超声。在20?5000 kHz频率范围内的磁场。预期从磁性纳米颗粒产生的超声波将应用于细胞中生物效应的声诱导和操纵生物膜的渗透性。

著录项

  • 作者

    Podaru, George.;

  • 作者单位

    Kansas State University.;

  • 授予单位 Kansas State University.;
  • 学科 Physical chemistry.;Pharmacology.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 96 p.
  • 总页数 96
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号