首页> 外文学位 >Control of electrical transport mechanisms at metal-zinc oxide interfaces by subsurface defect engineering with remote plasma treatment.
【24h】

Control of electrical transport mechanisms at metal-zinc oxide interfaces by subsurface defect engineering with remote plasma treatment.

机译:通过具有远程等离子体处理的地下缺陷工程控制金属-氧化锌界面处的电传输机制。

获取原文
获取原文并翻译 | 示例

摘要

ZnO has received renewed attention in recent years due its exciting properties as a wide band gap semiconductor. ZnO has several advantages over GaN including the availability of substrates, a room temperature excitonic emission, and an environmentally benign chemistry. ZnO applications include efficient blue light emitters, surface acoustic wave devices, transparent conductors, high power transistors, and solid state white lighting. Despite this versatility, several hurdles remain before device realization. Firstly, ZnO is almost always p-type. Although high quality n-type ZnO is abundant, there is no stable and reliable p-type doping scheme. Secondly, research into high quality Ohmic and Schottky contacts has been limited. Although there is an abundance of literature, there has yet to be an attempt to understand the physical and chemical mechanisms at metal- ZnO interfaces. In this work, plasma processing techniques are adopted to ZnO. These cold plasmas allow for room temperature modification of the subsurface. Implanting hydrogen has identified it as a primary n-type dopant responsible for a large fraction of the n-type conductivity. Oxygen plasma treatment has yielded an Ohmic to Schottky conversion by reducing oxygen defects at the near surface. Deposition of metals on clean and ordered surfaces reveal the importance that defects play at the metal-semiconductor interface. Higher concentrations of defects promote reactions. This increased reaction eutectic forming and oxide forming. Understanding the nature of the metal allows for engineering of high quality blocking contacts. These contacts can provide added thermal stability to devices. Subsurface introduction of hydrogen and nitrogen provide a potential roadmap to p-type doping and high quality Schottky contacts. Overall, control of transport properties and contact integrity is achieved by remote plasma processing.
机译:近年来,由于其作为宽带隙半导体的令人兴奋的特性,ZnO受到了新的关注。 ZnO比GaN具有许多优势,包括衬底的可用性,室温激子发射和对环境无害的化学物质。 ZnO的应用包括高效的蓝光发射器,表面声波器件,透明导体,高功率晶体管和固态白光。尽管具有这种多功能性,但在实现设备之前仍存在一些障碍。首先,ZnO几乎总是p型。尽管高质量的n型ZnO丰富,但没有稳定可靠的p型掺杂方案。其次,对高质量欧姆和肖特基接触的研究受到限制。尽管有大量文献,但尚未尝试理解金属-ZnO界面的物理和化学机理。在这项工作中,对ZnO采用了等离子体处理技术。这些冷等离子体允许对地下进行室温修改。注入氢已将其确定为主要的n型掺杂剂,可导致大部分n型导电性。氧等离子体处理通过减少近表面的氧缺陷产生了欧姆到肖特基的转化。在干净有序的表面上沉积金属表明缺陷在金属-半导体界面上起作用的重要性。较高浓度的缺陷会促进反应。这增加了反应共晶形成和氧化物形成。了解金属的性质可以设计出高质量的闭锁触点。这些触点可以为设备提供更高的热稳定性。氢和氮的地下引入为p型掺杂和高质量的肖特基接触提供了潜在的路线图。总体而言,通过远程等离子体处理可实现对传输特性和接触完整性的控制。

著录项

  • 作者

    Mosbacker, Howard Lee, IV.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 134 p.
  • 总页数 134
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 O49;
  • 关键词

  • 入库时间 2022-08-17 11:38:49

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号