首页> 外文学位 >Size effects on plasticity and fatigue microstructure evolution in FCC single crystals.
【24h】

Size effects on plasticity and fatigue microstructure evolution in FCC single crystals.

机译:尺寸对FCC单晶的塑性和疲劳微结构演变的影响。

获取原文
获取原文并翻译 | 示例

摘要

In aircraft structures and engines, fatigue damage is manifest in the progressive emergence of distributed surface cracks near locations of high stress concentrations. At the present time, reliable methods for prediction of fatigue crack initiation are not available, because the phenomenon starts at the atomic scale. Initiation of fatigue cracks is associated with the formation of Persistent slip bands (PSBs), which start at certain critical conditions inside metals with specific microstructure dimensions.;The main objective of this research is to develop predictive computational capabilities for plasticity and fatigue damage evolution in finite volumes. In that attempt, a dislocation dynamics model that incorporates the influence of free and internal interfaces on dislocation motion is presented. The model is based on a self-consistent formulation of 3-D Parametric Dislocation Dynamics (PDD) with the Boundary Element method (BEM) to describe dislocation motion, and hence microscopic plastic flow in finite volumes. The developed computer models are bench-marked by detailed comparisons with the experimental data, developed at the Wright-Patterson Air Force Lab (WP-AFRL), by three dimensional large scale simulations of compression loading on micro-scale samples of FCC single crystals. These simulation results provide an understanding of plastic deformation of micron-size single crystals. The plastic flow characteristics as well as the stress-strain behavior of simulated micropillars are shown to be in general agreement with experimental observations. New size scaling aspects of plastic flow and work-hardening are identified through the use of these simulations. The flow strength versus the diameter of the micropillar follows a power law with an exponent equal to -0.69. A stronger correlation is observed between the flow strength and the average length of activated dislocation sources. This relationship is again a power law, with an exponent -0.85. Simulation results with and without the activation of cross-slip are compared. Discontinuous hardening is observed when cross-slip is included. Experimentally-observed size effects on plastic flow and work- hardening are consistent with a "weakest-link activation mechanism". In addition, the variations and periodicity of dislocation activation are analyzed using the Fast Fourier Transform (FFT).;We then present models of localized plastic deformation inside Persistent Slip Band channels. We investigate the interaction between screw dislocations as they pass one another inside channel walls in copper. The model shows the mechanisms of dislocation bowing, dipole formation and binding, and dipole destruction as screw dislocations pass one another. The mechanism of (dipole passing) is assessed and interpreted in terms of the fatigue saturation stress. We also present results for the effects of the wall dipole structure on the dipole passing mechanism. The edge dislocation dipolar walls is seen to have an effect on the passing stress as well. It is shown that the passing stress in the middle of the channel is reduced by 11 to 23% depending on the initial configuration of the screw dislocations with respect to one another. Finally, from large scale simulations of the expansion process of the edge dipoles from the walls in the channel the screw dislocations in the PSB channels may not meet "symmetrically", i.e. precisely in the center of the channel but preferably a little on one or the other side. For this configuration the passing stress will be lowered which is in agreement to experimental observations.
机译:在飞机结构和发动机中,疲劳损伤表现为在高应力集中位置附近逐渐出现分布的表面裂纹。目前,尚无用于预测疲劳裂纹萌生的可靠方法,因为该现象始于原子尺度。疲劳裂纹的产生与永久滑带(PSBs)的形成有关,该滑带从具有特定微观结构尺寸的金属内部的某些临界条件开始。;本研究的主要目的是开发可预测的塑性和疲劳损伤演化的计算能力。有限的体积。在该尝试中,提出了一种位错动力学模型,该模型结合了自由和内部界面对位错运动的影响。该模型基于3-D参数位错动力学(PDD)与边界元方法(BEM)的自洽公式化,以描述位错运动,从而描述了有限体积中的微观塑性流动。所开发的计算机模型通过与Wright-Patterson空军实验室(WP-AFRL)开发的实验数据进行详细比较,从而成为基准,通过对FCC单晶微尺度样品上的压缩载荷进行三维大规模模拟。这些模拟结果提供了对微米级单晶塑性变形的理解。结果表明,模拟微柱的塑性流动特性以及应力应变行为与实验观察结果基本一致。通过使用这些模拟,可以确定塑性流动和加工硬化的新尺寸比例。流动强度与微柱直径的关系遵循幂定律,指数等于-0.69。在流动强度和活化位错源的平均长度之间观察到更强的相关性。这种关系再次是幂定律,指数为-0.85。比较了启用和不启用交叉滑动的仿真结果。当包括交叉滑动时,观察到不连续的硬化。实验观察到的尺寸对塑性流动和加工硬化的影响与“最弱链接激活机制”一致。此外,使用快速傅立叶变换(FFT)分析了位错激活的变化和周期性。然后,我们介绍了持久滑带通道内部的局部塑性变形模型。我们研究了螺钉错位在铜的通道壁内彼此通过时的相互作用。该模型显示了位错弯曲,偶极子形成和结合以及偶极螺距彼此传递时偶极子破坏的机制。 (偶极子通过)的机理根据疲劳饱和应力进行评估和解释。我们还提出了壁偶极子结构对偶极子通过机制的影响的结果。边缘错位偶极壁也被认为对传递应力也有影响。结果表明,通道中部的通过应力降低了11%到23%,这取决于螺钉位错相对于彼此的初始构造。最后,从边缘偶极子从通道壁的扩展过程的大规模模拟中,PSB通道中的螺钉位错可能不会“对称地”相遇,即恰好在通道中心,但最好在一个或一个通道上稍稍错开另一边。对于这种配置,通过应力将降低,这与实验观察一致。

著录项

  • 作者

    El-Awady, Jaafar Abbas.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 122 p.
  • 总页数 122
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号