首页> 外文学位 >Transient stability-constrained optimal power flow using improved differential evolution and parallel computing.
【24h】

Transient stability-constrained optimal power flow using improved differential evolution and parallel computing.

机译:使用改进的差分演化和并行计算,可在瞬态稳定状态下约束最优潮流。

获取原文
获取原文并翻译 | 示例

摘要

Optimal Power Flow (OPF) finds the delicate balance between economy and security in power systems. With the rapid increase of demand and deregulation of electricity markets, power systems tend to operate closer to stability boundaries. Thus, consideration of the transient stability limits in the OPF problem is becoming more and more imperative. It is, however, an open question as how to handle the stability constraints since transient stability is a dynamic concept with differential equations involved. Some conventional mathematical methods have been attempted mainly by approximating the differential equations to algebraic ones. However, conventional methods are sensitive to the starting points and have convergence difficulties in handling nonlinear, non-convex problems. Besides, the discretizing scheme will lead to computational inaccuracy and discrete control variable handling such as transformer tap settings is another problem for the conventional methods.;To address the above mentioned problems, this thesis developed an alternative solution based on Differential Evolution (DE). An improved version of DE with population re-initialization scheme is reported to ameliorate the premature problem of DE. As for transient stability constraints, a hybrid method which combines time domain simulation and transient energy function is employed to assess the stability of each individual with no limitation in system modeling. Since transient stability assessment is the most time-consuming part of the whole method, strategies called "stable-space push" and "fitness sorting" are also developed to reduce the searching space as well as the computation time. Other non-convex and discontinuous practical constraints that are difficult for conventional methods are also considered in this thesis. Performance of the proposed algorithm has been studied and compared with the reported results from conventional methods. Results show that the method developed is very powerful in solving nonlinear, non-convex, discontinuous complex optimization problem with both continuous and discrete control variables.;A parallel computation platform implemented on a Beowulf PC-cluster using Message-Passing Interface (MPI) technology is also built to speed up the proposed method. Case studies shows that parallelization does significantly improve the speed of DE and gives the possibility to realize online TSCOPF with moderate scale PC clusters and meet the real-world online application requirement.
机译:最佳潮流(OPF)在电力系统的经济性和安全性之间找到了微妙的平衡。随着需求的快速增长和电力市场的放松管制,电力系统趋向于在稳定边界附近运行。因此,在OPF问题中考虑瞬态稳定性极限变得越来越必要。然而,由于瞬态稳定性是涉及微分方程的动态概念,因此如何处理稳定性约束是一个悬而未决的问题。已经尝试了一些常规的数学方法,主要是通过将微分方程近似为代数方程。然而,常规方法对起点敏感,并且在处理非线性,非凸问题时存在收敛困难。此外,离散化方案将导致计算的不准确性,离散控制变量的处理(如变压器抽头设置)是常规方法的另一个问题。为了解决上述问题,本文提出了一种基于差分进化(DE)的替代解决方案。据报道,具有种群重新初始化方案的改进版DE可以缓解DE的过早问题。对于暂态稳定性约束,采用时域仿真和暂态能量函数相结合的混合方法来评估每个人的稳定性,而不受系统建模的限制。由于瞬态稳定性评估是整个方法中最耗时的部分,因此还开发了称为“稳定空间推入”和“适应性排序”的策略,以减少搜索空间和计算时间。本文还考虑了常规方法难以解决的其他非凸和不连续的实际约束。已经研究了所提出算法的性能,并将其与常规方法的报告结果进行了比较。结果表明,所开发的方法在解决具有连续和离散控制变量的非线性,非凸,不连续的复杂优化问题方面非常有效。;使用消息传递接口(MPI)技术在Beowulf PC集群上实现的并行计算平台还可以加快建议的方法。案例研究表明,并行化确实显着提高了DE的速度,并提供了使用中等规模的PC集群实现在线TSCOPF并满足现实世界在线应用程序需求的可能性。

著录项

  • 作者

    Cai, Hua Rong.;

  • 作者单位

    Hong Kong Polytechnic University (Hong Kong).;

  • 授予单位 Hong Kong Polytechnic University (Hong Kong).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

  • 入库时间 2022-08-17 11:38:47

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号