首页> 外文学位 >Creep of fiber reinforced polymer (FRP) pile materials.
【24h】

Creep of fiber reinforced polymer (FRP) pile materials.

机译:纤维增强聚合物(FRP)桩材料的蠕变。

获取原文
获取原文并翻译 | 示例

摘要

Deterioration of conventional piling systems costs the United States nearly ;In this research compressive creep of FRP is addressed. Creep has been modeled by implementing two available methods (thermal and energy), and the models are validated with conventional creep test results for virgin High Density Polyethylene (HDPE). Next, these models are used to estimate the creep of recycled HDPE and E-Glass which are the main components of FRP. By combining the results obtained from these models the creep and ultimate long-term loading capacity of each component and FRP is defined.;Results obtained from both energy and thermal models are in good harmony with each other and with the semi-long-term conventional creep results. The energy method can be adapted to calculate the stress level that would cause the onset of tertiary creep in a given number of years. Ultimate long-term loading capacity for recycled HDPE to prevent tertiary creep in 100 years (the life cycle of polymeric pile) is 1400 psi which is approximately 50% less than the ultimate short-term loading capacity. Similarly, the ultimate long-term loading capacity is close to 13000 psi for E-Glass which again is much lower that E-glass's short-term loading capacity of 22000 psi.;By combining the results and estimating the creep for FRP piling system, it is noted that the ultimate long-term loading capacity for these piles varies from 1600 to 2400 psi based on the E-glass content of the FRP. Introducing a factor of safety of 2 with respect to the variation of the recycled material's quality and nature of geotechnical projects; the allowable loading capacity for this piling system is 800 to 1200 psi. For this stress level the strain over 100 years is less than 1% which is within the acceptable range for geotechnical applications.
机译:常规打桩系统的恶化几乎使美国付出了代价;在这项研究中,研究了FRP的压缩蠕变问题。通过采用两种可用的方法(热和能量)对蠕变进行了建模,并使用原始高密度聚乙烯(HDPE)的常规蠕变测试结果对模型进行了验证。接下来,这些模型用于估算作为FRP主要成分的再生HDPE和E-玻璃的蠕变。通过组合从这些模型获得的结果,定义了每个组件和FRP的蠕变和极限长期承载能力。从能量模型和热模型获得的结果彼此之间以及与半长期常规模型之间的协调性很好蠕变结果。能量方法可以适用于计算在给定的年限内会引起三次蠕变发生的应力水平。防止100年(聚合物桩的生命周期)三次蠕变的再生HDPE的最终长期载荷容量为1400 psi,这比最终的短期载荷容量低约50%。同样,E-Glass的最终长期载荷能力接近13000 psi,这又远低于E-glass的短期载荷能力22000 psi。通过结合结果并估算FRP打桩系统的蠕变,值得注意的是,根据玻璃钢中玻璃纤维的含量,这些桩的最终长期载荷能力在1600至2400 psi之间变化。关于再生材料的质量和岩土工程性质的变化,引入2的安全系数;该打桩系统的允许负载能力为800至1200 psi。对于此应力水平,100年内的应变小于1%,这在岩土工程应用可接受的范围内。

著录项

  • 作者

    Bozorg Haddad, Amir Hosein.;

  • 作者单位

    Polytechnic University.;

  • 授予单位 Polytechnic University.;
  • 学科 Engineering Civil.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号