首页> 外文学位 >Elucidation of protein-precipitant phase diagrams and their link to crystal quality.
【24h】

Elucidation of protein-precipitant phase diagrams and their link to crystal quality.

机译:阐明蛋白质沉淀相图及其与晶体质量的关系。

获取原文
获取原文并翻译 | 示例

摘要

Proteins are critical components of many fundamental biological processes in human body. Our understanding of such fundamental biological processes at a molecular level is limited due to the lack of knowledge of the high-resolution structure of the proteins which depends on obtaining X-ray quality crystals of proteins. High throughput screening of a wide range of different conditions is typically required to obtain such high quality crystals of proteins, and unfortunately, these screens are often not successful. In this work we use an evaporation-based crystallization platform in which droplets containing protein and precipitant are gradually concentrated through evaporation of solvent until dryness. Gradual desiccation of protein-containing droplets ensures a phase transition, and the nature of the resulting solid phase(s) observed during and at the end of the experiment is used to guide the identification of crystallization conditions. The outcomes of individual experiments - the formation of gels, precipitates, micro crystals, or crystals - guide the search for and optimization of conditions resulting in diffraction quality crystals. The number, quality, and size of the resulting protein crystals is shown to depend significantly on the rate of increase in protein concentration, a key variable in the method described.;In order to gain a deeper understanding of the phase behavior of solutions used for protein crystallization, an experimental protocol is introduced to determine the solubility boundary and metastable zone width for protein/precipitant systems using the evaporation-based crystallization platform. Recently, generalized phase diagrams for small molecules and nanoparticles have been introduced in which the pair interaction of the long-time self diffusivity, D2, is used as a measure of the strength of particle interactions governing the solubility of a particular compound. The solubility data obtained using the methods developed in this work is mapped onto the generalized phase diagram where D2 is determined by measuring the concentration dependence of protein diffusivities using Pulsed-Field Gradient Nuclear Magnetic Resonance (PFG NMR). We demonstrate that from the knowledge of the metastable zone width we are able to separate the nucleation and growth of crystals to produce larger, good quality crystals.;Understanding of protein crystal nucleation and growth mechanisms is limited by the difficulty of measuring rates of crystal formation and growth. Here we develop a kinetic model capable of predicting changes in the number and size of protein crystals as a function of time under continuous evaporation. The determination of kinetic parameters is greatly simplified if the protocol of decoupling nucleation and growth is applied to collect experimental growth data. Moreover, this model successfully predicts the initial condition of drops that will result in gel formation. We use this model with experimental crystal growth data of hen egg white lysozyme and are able to determine the crystal nucleation and growth rate parameters.;Recently, bicelles (disk shaped "particles") have been introduced as a promising medium for the crystallization of membrane proteins but not much progress has been made due to the lack of understanding of the mechanism underlying the crystallization process. To this end a systematic characterization of the interaction between these bicelles using PFG NMR under different experimental parameters (such as concentrations of ions and other solutes in the solution, temperature and the q ratio of the lipids used to make bicelles) is reported.;In sum, we report new evaporation- and dilution-based protocols that will enable structural biologist to rapidly determine the phase diagram (e.g. solubility boundary, metastable zone width) of proteins of unknown structure using a very small sample volume. The knowledge of phase diagram of a protein/precipitant system thus obtained will be useful in obtaining high quality crystals for X-ray diffraction studies. Moreover, we use theory to compare different protein molecules on a generalized phase diagram using the solubility data obtained from our experiments. The comparison of the solubility boundary and the metastable boundary on the same footing will provide a reasonable estimate of the metastable zone width, which will aid crystallographers in screening conditions conducive for protein crystallization. We also develop a kinetic model that describes the competition between the rates of supersaturation, crystal nucleation and crystal growth occurring in the regulated-evaporation crystallization process. The knowledge of these rates coupled with the knowledge of the phase diagram of a protein/precipitant system will enable crystallographers to predict a priori the outcome of an experiment performed in an evaporation-based crystallization platform.
机译:蛋白质是人体许多基本生物学过程的关键组成部分。由于缺乏对蛋白质的高分辨率结构的了解,这取决于获得蛋白质的X射线质量晶体,因此我们在分子水平上对此类基本生物学过程的理解受到限制。为了获得这种高质量的蛋白质晶体,通常需要对各种不同条件进行高通量筛选,但是不幸的是,这些筛选通常并不成功。在这项工作中,我们使用基于蒸发的结晶平台,在该平台上,通过蒸发溶剂直至干燥,逐渐浓缩包含蛋白质和沉淀剂的液滴。含蛋白质的液滴的逐渐干燥确保了相变,并且在实验过程中和实验结束时观察到的所得固相的性质可用于指导鉴定结晶条件。单个实验的结果-形成凝胶,沉淀,微晶或晶体-指导寻找和优化产生衍射质量晶体的条件。结果表明,所得蛋白质晶体的数量,质量和大小显着取决于蛋白质浓度的增加速率,蛋白质浓度是所述方法中的关键变量。为了更深入地了解所用溶液的相行为,蛋白质结晶,引入了一个实验方案,以使用基于蒸发的结晶平台确定蛋白质/沉淀剂系统的溶解度边界和亚稳区域宽度。近来,已经引入了用于小分子和纳米颗粒的广义相图,其中长期自扩散性D2的成对相互作用被用作衡量特定化合物溶解度的颗粒相互作用强度的量度。使用这项工作中开发的方法获得的溶解度数据被映射到广义相图上,其中D2通过使用脉冲场梯度核磁共振(PFG NMR)测量蛋白质扩散率的浓度依赖性来确定。我们证明,从对亚稳带宽度的了解中,我们能够分离出晶体的成核和生长,以生产出更大,质量更好的晶体。;对蛋白质晶体成核和生长机制的了解受到测量晶体形成速率的困难的限制和成长。在这里,我们建立了一个动力学模型,能够预测连续蒸发下蛋白质晶体的数量和大小随时间的变化。如果应用去核和生长的耦合方案来收集实验生长数据,则可以大大简化动力学参数的确定。而且,该模型成功地预测了将导致凝胶形成的液滴的初始状态。我们将此模型与鸡蛋清溶菌酶的晶体生长实验数据一起使用,并能够确定晶体的成核度和生长速率参数。;最近,已引入Bicelles(盘状“颗粒”)作为膜结晶的有前途的介质蛋白质,但由于缺乏对结晶过程背后机制的了解,因此没有取得太大进展。为此,报道了在不同的实验参数(例如溶液中离子和其他溶质的浓度,温度和用于制备双细胞的脂质的q比)下使用PFG NMR对这些双细胞之间相互作用的系统表征。总而言之,我们报告了新的基于蒸发和稀释的方法,这些方法将使结构生物学家可以使用非常小的样品量来快速确定未知结构蛋白质的相图(例如,溶解度边界,亚稳区域宽度)。由此获得的蛋白质/沉淀物系统的相图知识将有助于获得用于X射线衍射研究的高质量晶体。此外,我们使用从实验中获得的溶解度数据,使用理论在广义相图上比较不同的蛋白质分子。在相同基础上对溶解度边界和亚稳边界的比较将提供对亚稳区域宽度的合理估计,这将有助于结晶学家在筛选有利于蛋白质结晶的条件下进行。我们还开发了动力学模型,该模型描述了在调节蒸发结晶过程中发生的过饱和速率,晶体成核速率和晶体生长之间的竞争。这些速率的知识以及蛋白质/沉淀剂系统相图的知识将使结晶学家能够先验地预测在基于蒸发的结晶平台中进行的实验的结果。

著录项

  • 作者

    Talreja, Sameer.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化工过程(物理过程及物理化学过程);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号