首页> 外文学位 >Microstructure-property-performance relationships of carbon-fiber-reinforced carbon composite friction materials.
【24h】

Microstructure-property-performance relationships of carbon-fiber-reinforced carbon composite friction materials.

机译:碳纤维增强碳复合摩擦材料的微观结构-性能-性能关系。

获取原文
获取原文并翻译 | 示例

摘要

Carbon/carbon composites are well suited to high energy-friction applications due to their excellent thermal conductivity and capacity, low density, and their ability to withstand the temperatures up to 3000°C. Since friction performance is critical, understanding the fundamental principles of controlling frictional performance is a crucial step in tailored design of Carbon/carbon (C/C) composite friction materials. The frictional performance of C/C composites is known to be dependent on many factors, of which material microstructure and properties (mechanical, thermal, chemical), and serving environment are primary.;This dissertation presents experimental research to understand the tribological principles of PAN-fiber reinforced carbon matrix composites. Samples were subjected to three different heat treatment temperatures (1800, 2100 and 2400°C), which altered the microstructure, properties and friction performance. Microstructure was characterized utilizing a combination of light and high-resolution transmission/scanning electron microscopy, focused ion beam, and x-ray diffraction methods. A nanoindentation technique was used to characterize the nano-mechanical properties of individual components. Thermal conductivity was calculated from thermal diffusivity, specific heat capacity and density of the samples. The subscale aircraft dynamometer, equipped with a mass spectroscopy to analyze evolving gases, was used for simulations of aircraft landing at various energy and humidity levels.;Increased heat treatment temperature (HTT) led to formation of a better-organized microstructure of fiber and matrix, and also to formation of thermal cracks. Heat treatment produced an increase in average carbon crystallite size from 103 to 193A. The elastic modulus of rough laminar CVI pyrocarbon decreased from 18 GPa to 12 GPa with increased heat treatment temperatures. In contrast, the isotropic CVI pyrocarbon and charred resin matrix displayed only a slight change of elastic modulus. As expected, the elastic modulus of PAN fiber also changed significantly with the development of a better-organized microstructure in the fiber axial direction from 18 GPa to 34 GPa. Thermal conductivity increases as a function of increased heat treatment temperature.;A friction layer, different from the bulk material, formed on the contact surface after friction tests. While a continuous friction layer formed after the friction tests at 100% normal landing energy (NLE) simulations, after 25% NLE level friction tests, the friction layer either did not form or only partially formed on the contact surface. HRTEM studies revealed an amorphous carbon friction layer after 100% NLE simulations. This new type friction layer was found to be responsible for low wear of C/C composites at high energy landing simulations. Friction test results showed that adsorbed moisture on the friction surface is one factor, which reduces the CoF as well as the wear of investigated C/C composites in low energy tests. However, in high energy level tests, adsorbed vapor is not effective due to high, friction induced, contact temperatures. The oxidation itself (increased CO2 content) does not necessarily produce lubricating effect. Coefficient of friction (CoF) were always high in the simulated landing stops when the amount of CO 2 released was high. This research showed that by understanding the relationships between the factors affecting wear, CoF and friction layer formation, it is possible to optimize the bulk microstructure of the bulk material in order to tailor the properties of C/C composites friction materials.
机译:碳/碳复合材料具有出色的导热性和容量,低密度,并且能够承受高达3000°C的温度,因此非常适合高能量摩擦应用。由于摩擦性能至关重要,因此了解摩擦性能控制的基本原理对于碳/碳(C / C)复合摩擦材料的定制设计至关重要。已知C / C复合材料的摩擦性能取决于许多因素,其中材料的微观结构和性能(机械,热,化学)和使用环境是主要因素。;本论文提供了实验研究来了解PAN的摩擦学原理-纤维增强的碳基复合材料。样品经受三种不同的热处理温度(1800、2100和2400°C),从而改变了组织,性能和摩擦性能。利用光和高分辨率透射/扫描电子显微镜,聚焦离子束和X射线衍射方法的组合对微结构进行了表征。纳米压痕技术用于表征单个组件的纳米机械性能。由热扩散率,比热容和样品密度计算出导热率。配备了质谱仪以分析不断变化的气体的超小型飞机测功机用于模拟在各种能量和湿度水平下的飞机着陆。;热处理温度(HTT)的升高导致形成了组织更好的纤维和基体微观结构,还会形成热裂纹。热处理使平均碳微晶尺寸从103A增加到193A。随着热处理温度的升高,粗糙层状CVI热解碳的弹性模量从18 GPa降低至12 GPa。相反,各向同性的CVI焦碳和焦化的树脂基体仅显示出弹性模量的微小变化。不出所料,PAN纤维的弹性模量也随着组织更好的组织在纤维轴向从18 GPa到34 GPa的变化而发生了显着变化。导热系数随热处理温度的升高而增加。摩擦试验后,在接触面上形成了不同于块状材料的摩擦层。在100%正常着陆能量(NLE)模拟下的摩擦测试后形成了连续摩擦层,而在25%NLE级别的摩擦测试后形成了连续摩擦层,该摩擦层未形成或仅部分形成在接触面上。 HRTEM研究显示,经过100%NLE模拟后,非晶碳摩擦层形成。在高能着陆模拟中,发现这种新型摩擦层可降低C / C复合材料的磨损。摩擦测试结果表明,摩擦表面上吸附的水分是一个因素,这降低了低能量测试中所研究的C / C复合材料的CoF以及磨损。但是,在高能级测试中,由于高的摩擦感应接触温度,吸附的蒸气无效。氧化本身(增加的CO2含量)不一定产生润滑作用。当释放的CO 2量高时,在模拟着陆停止时,摩擦系数(CoF)始终很高。这项研究表明,通过了解影响磨损,CoF和摩擦层形成的因素之间的关系,可以优化散装材料的整体微观结构,以适应C / C复合材料摩擦材料的性能。

著录项

  • 作者

    Ozcan, Soydan.;

  • 作者单位

    Southern Illinois University at Carbondale.;

  • 授予单位 Southern Illinois University at Carbondale.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 168 p.
  • 总页数 168
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

  • 入库时间 2022-08-17 11:38:43

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号