首页> 外文学位 >Photobiological hydrogen production and carbon dioxide sequestration.
【24h】

Photobiological hydrogen production and carbon dioxide sequestration.

机译:光生物制氢和二氧化碳隔离。

获取原文
获取原文并翻译 | 示例

摘要

Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration.;First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established.;Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms.;In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of irradiance and CO2 concentration. Kinetic models were successfully developed based on the Monod model and on a novel scaling analysis employing the CO2 consumption half-time as the time scale.;Finally, the growth and hydrogen production of Anabaena variabilis have been compared in a flat panel photobioreactor using three different nutrient media under otherwise similar conditions. Light to hydrogen energy conversion efficiency for Allen-Arnon medium was superior by a factor of 5.5 to both BG-11 and BG-11o media. This was attributed to the presence of vanadium and larger heterocyst frequency observed in the Allen-Arnon medium.
机译:光生物制氢具有二氧化碳隔离的优点,是热化学和电解技术的替代方法。然而,由于有限的光传输,传质和营养介质组成,其太阳能到氢的能量转换效率低。本研究旨在解决这些局限性,可分为三个部分:(1)对产氢和消耗二氧化碳的微生物的辐射特性进行实验测量;(2)在光生物反应器中进行太阳辐射传递建模和模拟;(3)首先,利用辐射传输方程(RTE)对包含微生物和气泡的光生物反应器中的太阳辐射传递进行建模,并使用改进的特征方法进行求解。研究得出结论,比尔-朗伯定律给出的结果不准确,必须考虑各向异性散射才能预测光生物反应器内部的局部辐照度。建立了精确测量微生物完整辐射特征的需求。然后,开发了用于测量微生物完整辐射特征的实验装置和分析方法,并通过实验成功地进行了验证。已经建立了代表微生物辐射特性的数据库,包括蓝细菌鱼腥藻,紫色无硫细菌球形红细菌和绿藻莱茵衣藻及其三种基因工程菌株。这首次实现了基因工程对微生物辐射特性的影响的定量评估。此外,已经进行了参数化实验研究,以模拟变色鱼腥藻的生长,CO2消耗和H 2产生,辐照度和CO2浓度的函数。在Monod模型的基础上成功地建立了动力学模型,并以CO2消耗量的一半时间作为时间尺度进行了新颖的比例分析。最后,使用三种不同的平板光生物反应器比较了鱼腥藻的生长和产氢量在其他类似条件下的营养培养基。与BG-11和BG-11o介质相比,Allen-Arnon介质的光能到氢能的转换效率提高了5.5倍。这归因于在Allen-Arnon培养基中观察到钒的存在和更大的异胚胞频率。

著录项

  • 作者

    Berberoglu, Halil.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Mechanical.;Energy.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 354 p.
  • 总页数 354
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;能源与动力工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号