首页> 外文学位 >Lattice Boltzmann simulation of laser interaction with weakly ionized plasmas.
【24h】

Lattice Boltzmann simulation of laser interaction with weakly ionized plasmas.

机译:Lattice Boltzmann模拟激光与弱电离等离子体的相互作用。

获取原文
获取原文并翻译 | 示例

摘要

Laser-plasma interaction (LPI) is an important subject to a variety of disciplines in engineering and science, such as laser welding, pulsed laser deposition (PLD), laser-generated x-rays and laser-aided ignition of inertial confinement fusion (ICF). In particular, laser interaction with weakly ionized plasmas has invoked a great deal of interest to the laser manufacturing community because plasmas naturally appear and interact with a laser beam in such high energy manufacturing processes. Due to the complexity and richness of physics, numerical model studies have been pivotal in the understanding of LPI. A number of numerical models have been created to study LPI and help design LPI equipment, and there are basically two kinds of numerical models: the kinetic-based model and the hydrodynamic model. Although kinetic models (e.g., particle-in-cell model) have been very successful, they are computationally expensive in most cases and their application is rather limited. Hydrodynamic models are also a powerful tool for LPI simulations, but they fail in some circumstances because they are based on the continuum assumption.;In this study, a new numerical model based on the lattice Boltzmann method (LBM) is introduced to simulate laser interaction with weakly-ionized plasmas. The LBM Huayu Li is a kinetic theory based method, where the distribution functions of the individual species of particles in the plasma are solved and thus the macroscopic variables (such as number density and momentum) are obtained. In this study, the Boltzmann equation with ionization and recombination terms is solved. Since only number density and momentum can be correctly retrieved from the two-dimensional nine-bit (D2Q9) discretization scheme, a set of energy equations is derived from the Boltzmann equation and solved separately to calculate temperature fields. The electromagnetic field from both laser and plasma is updated by solving Maxwell's equations using the finite-difference time-domain (FDTD) method. In the implementation of the present model, a resealing scheme is introduced to select the appropriate simulation parameters for the LBM, so that the physical properties of the plasma can be used. This resealing scheme has been validated by hydrodynamic flow problems and the electron diffusion problem. In this study, a two-dimensional weakly-ionized helium plasma interaction with a continuous wave CO2 laser beam is simulated.;This model is a mesoscale approach based on the kinetic theory and the LBM, so it has a number of inherent advantages over previous models. Because the LBM solver is employed, this approach is computationally efficient and easy to parallelize. In addition, this model is capable of predicting time-dependent number densities, velocities, and temperatures of all particle species for a fairly large scale problem without employing the continuum assumption. It is believed that this model has a lot of potential for the studies of weakly ionized plasmas in a wide spectrum of applications.
机译:激光-等离子体相互作用(LPI)是工程和科学领域中众多学科的重要课题,例如激光焊接,脉冲激光沉积(PLD),激光产生的X射线以及惯性约束聚变(ICF)的激光辅助点火)。特别是,激光与弱电离等离子体的相互作用引起了激光制造界的极大兴趣,因为等离子体在这种高能量制造过程中自然地出现并与激光束相互作用。由于物理学的复杂性和丰富性,数值模型研究对于理解LPI至关重要。已经创建了许多用于研究LPI和帮助设计LPI设备的数值模型,基本上有两种数值模型:基于动力学的模型和流体动力学模型。尽管动力学模型(例如,细胞内颗粒模型)非常成功,但在大多数情况下它们在计算上是昂贵的,并且其应用相当有限。流体力学模型也是进行LPI仿真的强大工具,但由于基于连续性假设,它们在某些情况下会失败。;在本研究中,引入了一种基于晶格Boltzmann方法(LBM)的新数值模型来模拟激光相互作用与弱电离的等离子体。 LBM Huayu Li是基于动力学理论的方法,其中求解了等离子体中单个粒子种类的分布函数,从而获得了宏观变量(例如数密度和动量)。在这项研究中,解决了带有电离和复合项的玻尔兹曼方程。由于只能从二维九位(D2Q9)离散方案中正确检索数字密度和动量,因此从Boltzmann方程导出了一组能量方程,并分别求解以计算温度场。通过使用有限差分时域(FDTD)方法求解麦克斯韦方程,可以更新来自激光和等离子体的电磁场。在本模型的实现中,引入了重新密封方案以为LBM选择合适的仿真参数,从而可以使用等离子体的物理特性。这种重新密封方案已通过流体动力流动问题和电子扩散问题得到了验证。在本研究中,模拟了二维弱电离氦等离子体与连续波CO2激光束的相互作用。;该模型是基于动力学理论和LBM的中尺度方法,因此与以前的模型相比具有许多固有优势楷模。因为使用了LBM求解器,所以该方法在计算上很有效并且易于并行化。此外,该模型能够在不采用连续性假设的情况下,针对相当大的规模问题预测所有粒子种类的时间依赖性数密度,速度和温度。相信该模型在广泛应用中对弱电离等离子体的研究具有很大的潜力。

著录项

  • 作者

    Li, Huayu.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

  • 入库时间 2022-08-17 11:38:45

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号