首页> 外文学位 >The kinesin-1 motor domain is regulated by a direct interaction of its head and tail.
【24h】

The kinesin-1 motor domain is regulated by a direct interaction of its head and tail.

机译:kinesin-1运动域受其头部和尾部的直接相互作用调节。

获取原文
获取原文并翻译 | 示例

摘要

Kinesin-1 is a motor protein that transports cargo along microtubules. Inside cells, the majority of kinesin-1 is regulated to conserve ATP and ensure its proper intracellular distribution and coordination with other motors. Regulated kinesin-1 is folded in half, and interactions between coiled-coil regions near the N-terminal enzymatically active heads and the C-terminal regulatory tails bring these globular elements in close proximity to stabilize the folded conformation. However, it has remained a mystery how the kinesin-1 tail inhibits ADP release and thus catalytic activity in this folded conformation.;To test whether the tail regulates the head by directly interacting with it, my collaborators and I performed photochemical cross-linking experiments on head and tail domains in trans and analyzed these results using mass spectrometry. These techniques provided the first evidence of a direct contact between the head and tail domain and allowed for mapping of the inhibitory interaction; the regulatory QIAKPIRP motif of the tail interacts with Switch I and the nucleotide pocket of the motor domain. Cryo-electron microscopy on a head-tail crosslink confirmed this finding and provided a possible mechanism for regulation, as Switch I was observed for the first time in an "open" position, a conformation with high ADP affinity. A new state for kinesin-1 was also seen, in which the tail simultaneously interacts with Switch I and the microtubule. In this state the motor is regulated through the interaction of the QIAKPIRP motif of the tail with Switch I, but remains microtubule-bound through stabilizing interactions between the tail and tubulin. The physiological relevance of this state remains unknown.;Electron paramagnetic resonance and fluorescence assays were used to examine how the tail, specifically the K922 residue, inhibits ADP release. The tail-induced conformational restriction of the nucleotide pocket is distinct from the conformational changes caused by microtubule binding and occurs independent of the regulatory K922 residue. While the exact mechanism of inhibition could not be determined, structural and biochemical homology with G-proteins suggests that the tail may be acting in a manner similar to guanine nucleotide dissociation inhibitors; this mode of regulation may be a common feature among kinesin family members.
机译:Kinesin-1是一种运动蛋白,沿着微管运输货物。在细胞内部,大多数kinesin-1都经过调节以保存ATP,并确保其在细胞内的适当分布并与其他马达协调。调节的驱动蛋白-1被折叠成两半,并且N末端酶促活性头附近的卷曲螺旋区域和C末端调节尾部之间的相互作用使这些球状元件紧密相邻,以稳定折叠的构象。然而,在这种折叠构象中,kinesin-1尾巴如何抑制ADP释放并因此抑制其催化活性仍然是一个谜。为了测试尾巴是否通过与头部直接相互作用来调节头部,我和我的合作者进行了光化学交联实验反式在头和尾结构域上进行分析,并使用质谱分析这些结果。这些技术提供了头域和尾域之间直接接触的第一个证据,并可以绘制抑制性相互作用的图谱。尾部的调节性QIAKPIRP基序与Switch I和运动域的核苷酸口袋相互作用。头尾交联体上的低温电子显微镜证实了这一发现,并提供了一种可能的调节机制,因为首次在“开放”位置观察到Switch I,它具有高ADP亲和力。还看到了驱动蛋白1的新状态,其中尾巴同时与Switch I和微管相互作用。在这种状态下,通过尾巴的QIAKPIRP基序与Switch I的相互作用来调节马达,但通过稳定尾巴和微管蛋白之间的相互作用,使微管结合。该状态的生理相关性仍然未知。;使用电子顺磁共振和荧光分析法检查尾巴,特别是K922残基如何抑制ADP释放。核苷酸口袋的尾巴诱导的构象限制不同于微管结合引起的构象变化,并且独立于调节性K922残基而发生。虽然无法确定确切的抑制机制,但与G蛋白的结构和生化同源性表明,尾巴可能以类似于鸟嘌呤核苷酸解离抑制剂的方式起作用。这种调节方式可能是驱动蛋白家族成员的共同特征。

著录项

  • 作者

    Dietrich, Kristen Ann.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Biology Cell.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 280 p.
  • 总页数 280
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 细胞生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号