首页> 外文学位 >Novel insights into retinoid metabolism and actions: A genetic dissection.
【24h】

Novel insights into retinoid metabolism and actions: A genetic dissection.

机译:有关类维生素A代谢和作用的新颖见解:遗传解剖。

获取原文
获取原文并翻译 | 示例

摘要

My thesis research focuses on understanding retinoid metabolism and physiology in the intestine, primarily in identifying and characterizing an acyl-CoA-dependent enzyme, which was first proposed by the literature over twenty-five years ago to have physiologically important role in catalyzing retinyl ester formation. However, until my work, this enzyme had not been identified or characterized at the molecular level. My studies are also important because they suggest casual linkages between impaired retinyl ester synthesis and storage and the development of two very common chronic diseases, type II diabetes and liver disease.; My studies demonstrate that diacylglycerol acyltransferase 1 (DGAT1) catalyzes the acyl-CoA-dependent retinyl ester formation in vitro and in vivo. DGAT1 acts as a physiologically and pharmacologically significant intestinal acyl:retinol acyltransferase (ARAT) to facilitate retinyl ester formation and retinoid absorption from the diet. However, other intestinal ARATs also contribute towards intestinal processing of a large pharmacological dose of retinol. Unlike the intestine, DGAT1 does not have a significant role in adipose tissue and liver in acting as an ARAT, under either physiological or pharmacological conditions, to facilitate retinyl ester formation and storage. Moreover, DGAT1 is unable to synthesize retinyl ester that is incorporated into nascent very low density protein (VLDL), whereas lecithin:retinol acyltransferase (LRAT) plays an importance role in this process. My work also demonstrates that cellular retinol-binding protein, type II (CRBPII), which is expressed solely in the adult intestine, in vivo channels retinol to LRAT for retinyl ester synthesis. Contrary to what has been proposed in the literature based on in vitro studies, CRBPII does not directly prevent retinol from being acted upon by DGAT1 or other intestinal ARATs in vivo.; Cellular retinol-binding protein, type I (CRBPI) has a role in preventing retinol from degradation in the liver. I obtained this evidence through characterizations of LRAT/CRBPI-deficient mice that I generated for my studies. Moreover, CRBPI may have a previously unsuspected role(s) in adipose tissue since the absence of CRBPI markedly diminishes adipose tissue retinoid storage in LRAT-deficient mice. Intriguingly, two of double knockout mice I generated in my studies, LRAT/DGAT and LRAT/CRBPI-deficient mice displayed hepatic phenotypes that are indicative of the onset of liver disease. The LRAT/DGAT-deficient mice showed excessive accumulation of extracellular matrix in some livers and this was accompanied by an elevation in hepatic CYP26A1 (cytochrome P450 26A1) mRNA expression. These would suggest that these mice are experiencing retinoid toxicity due to the increase in hepatic retinoic acid levels. LRAT/CRBPI-deficient mice exhibit excessive accumulation of triglyceride in their livers. This was evidenced both by histology and a direct increase in hepatic triglyceride levels. The elevated hepatic triglyceride levels were accompanied by an upregulation of hepatic sterol-regulatory element binding protein-1c (SREBP1c), a master regulator of hepatic lipogenesis as well as by an increase in CYP26A1 mRNA expression.; The studies I carried out in the last research chapter of my thesis (Chapter IV) demonstrate that human aldose reductase is a physiologically significant retinaldehyde reductase which catalyzes retinaldehyde reduction to retinol in normal human keratinocytes. The uptake and conversion of retinaldehyde to retinol by normal human keratinocytes is inhibited by a drug, zopolrelstat, which specifically blocks aldose reductase activity. Since aldose reductase activity is highly correlated with the development and progression of diabetic complications, my data suggest a linkage between the complications of diabetes and retinoid physiology, involving aldose reductase. (Abstract shortened by UMI.)
机译:我的论文研究重点是了解肠道中的类维生素A代谢和生理,主要是鉴定和表征酰基辅酶A依赖性酶,该酶在二十多年前首次提出,在催化类视黄醇酯形成中具有重要的生理作用。 。但是,直到我从事这项工作之前,还没有在分子水平上鉴定或表征这种酶。我的研究也很重要,因为它们表明视黄醇酯合成和储存受损与两种非常常见的慢性疾病(II型糖尿病和肝病)的发展之间存在偶然联系。我的研究表明,二酰基甘油酰基转移酶1(DGAT1)在体内和体外催化酰基辅酶A依赖性视黄酯的形成。 DGAT1充当具有重要生理和药理作用的肠道酰基:视黄醇酰基转移酶(ARAT),可促进饮食中视黄酯的形成和类维生素A的吸收。但是,其他肠道ARAT也有助于大剂量视黄醇的肠道加工。与肠不同,DGAT1在生理或药理条件下促进视黄酯的形成和储存中,在脂肪组织和肝脏中起着ARAT的作用并不重要。此外,DGAT1无法合成视黄酯,后者被整合到新生的极低密度蛋白(VLDL)中,而卵磷脂:视黄醇酰基转移酶(LRAT)在此过程中起着重要作用。我的工作还证明,仅在成年肠道中表达的II型细胞视黄醇结合蛋白(CRBPII)在体内通过视黄醇通向LRAT进行视黄酯合成。与基于体外研究的文献中提出的相反,CRBPII不能直接阻止DGAT1或其他肠道ARAT在体内作用视黄醇。 I型细胞视黄醇结合蛋白(CRBPI)在防止视黄醇在肝脏中降解方面具有作用。我通过为研究生成的LRAT / CRBPI缺陷小鼠的表征获得了这一证据。此外,CRBPI在脂肪组织中可能具有以前未曾预料到的作用,因为缺少CRBPI会显着减少LRAT缺陷小鼠的脂肪组织类维生素A储存。有趣的是,我在研究中产生的两只双基因敲除小鼠LRAT / DGAT和LRAT / CRBPI缺陷小鼠表现出指示肝病发作的肝表型。 LRAT / DGAT缺陷小鼠在一些肝脏中显示出细胞外基质的过度积累,并伴有肝CYP26A1(细胞色素P450 26A1)mRNA表达的升高。这些表明由于肝视黄酸水平的增加,这些小鼠正在经历类视色素毒性。 LRAT / CRBPI缺陷型小鼠的肝脏中甘油三酸酯过多。组织学和肝甘油三酯水平的直接升高都证明了这一点。肝甘油三酸酯水平升高伴有肝固醇调节元件结合蛋白-1c(SREBP1c)上调,肝脂肪生成的主要调节剂以及CYP26A1 mRNA表达的增加。我在论文的最后一个研究章节(第四章)中进行的研究表明,人醛糖还原酶是一种具有生理意义的视黄醛还原酶,可催化正常人角质形成细胞中视黄醛还原为视黄醇。正常人角质形成细胞对视黄醛的摄取和向视黄醇的转化受到一种药物zopolrelstat的抑制,该药物特异性阻断醛糖还原酶的活性。由于醛糖还原酶的活性与糖尿病并发症的发生和发展高度相关,因此我的数据表明糖尿病并发症和类维生素A生理之间存在联系,涉及醛糖还原酶。 (摘要由UMI缩短。)

著录项

  • 作者

    Wongsiriroj, Nuttaporn.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Health Sciences Nutrition.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 284 p.
  • 总页数 284
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 预防医学、卫生学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号