首页> 外文学位 >Engineering the embryonic stem cell niche to control cell fate.
【24h】

Engineering the embryonic stem cell niche to control cell fate.

机译:工程化胚胎干细胞生态位以控制细胞命运。

获取原文
获取原文并翻译 | 示例

摘要

In vivo, stem cells reside in specialized microenvironments called 'niches' that consist of soluble cytokines, cell-cell interactions, and cell-extra-cellular matrix (ECM) interactions. These niches enable cell survival and guide self-renewal or differentiation. Human embryonic stem cells (hESCs) are an ideal source for cells in regenerative medicine for their remarkable ability to self-renew as well as to differentiate into mature cell types. However, before hESCs can be exploited greater control over cell fate must be achieved. Here, we investigated the mechanisms by which micro-patterning technologies can be used to establish homogeneous artificial niches to more precisely regulate hESC fate. In our initial study, we demonstrated that the activation of the bone morphogenetic protein (BMP)/growth differentiation factor (GDF3) pathway within the hESC niche was a balance of two factors: niche-composition and niche-size. By restricting hESC colony diameter to 200-800μm, spatial control over self-renewal and differentiation was achieved. In a second study, we demonstrated that hESC differentiation into ExE (small colonies) or neural pre-cursors (large colonies) was highly efficient (>80%) within micro-fabricated niches, exceeding efficiencies obtained by current differentiation protocols. In a third study, a mathematical model was developed to provide mechanistic insight into how niche-size regulates endogenous signaling by estimating how the trapping of soluble ligands changes with alterations to the spatial arrangement of cell cultures. This model was validated by predicting and measuring endogenous signalling activity of the gp130-Janus kinase—signal transducer and activator of transcription (gp130-Jak-STAT) pathway in mouse embryonic stem cells (mESCs) in non-patterned and micro-patterned cultures. Overall, these studies highlight the opportunity of using micro-patterning to create homogenous niches capable of regulating endogenous signalling and hESC fate. This approach provides a novel method to regulate hESC differentiation into clinically revelant cell types that can be used in future regenerative medicine applications.
机译:在体内,干细胞位于称为“小生境”的特殊微环境中,该环境由可溶性细胞因子,细胞间相互作用以及细胞外细胞基质(ECM)相互作用组成。这些壁ches使细胞存活并指导自我更新或分化。人类胚胎干细胞(hESCs)具有卓越的自我更新能力以及分化成成熟细胞类型的能力,因此是再生医学中细胞的理想来源。但是,在可以利用hESC之前,必须实现对细胞命运的更大控制。在这里,我们研究了微模式技术可用于建立同质人工壁ni以更精确地调节hESC命运的机制。在我们的初步研究中,我们证明了hESC生态位内骨形态发生蛋白(BMP)/生长分化因子(GDF3)途径的激活是两个因素的平衡:生态位组成和生态位大小。通过将hESC菌落直径限制在200-800μm,可以实现自我更新和分化的空间控制。在第二项研究中,我们证明了hESC分化为ExE(小菌落)或神经前体(大菌落)在微型预制ni中是高效的(> 80%),超过了当前分化方案获得的效率。在第三项研究中,开发了一个数学模型,以通过估计可溶性配体的捕集如何随细胞培养物的空间排列变化而变化,从而对小生境大小如何调节内源性信号传导提供机械洞察力。通过预测和测量gp130-Janus激酶的内源性信号传导活性(无模式和微模式培养物中的小鼠胚胎干细胞(mESCs)的信号转导和转录激活子(gp130-Jak-STAT)途径),验证了该模型的有效性。总的来说,这些研究突出了使用微模式来创造能够调节内源性信号传导和hESC命运的同质生境的机会。这种方法提供了一种新的方法,可将hESC分化为临床上可暴露的细胞类型,从而可用于未来的再生医学应用。

著录项

  • 作者

    Peerani, Raheem.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Biology Cell.;Engineering Chemical.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 188 p.
  • 总页数 188
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号