首页> 外文学位 >Molecular regulation of cardiac stem cell growth and differentiation by extrinsic factors and novel intracellular signaling pathways.
【24h】

Molecular regulation of cardiac stem cell growth and differentiation by extrinsic factors and novel intracellular signaling pathways.

机译:外在因素和新型细胞内信号传导途径对心脏干细胞生长和分化的分子调控。

获取原文
获取原文并翻译 | 示例

摘要

Insufficient myocardial regeneration following ischemic injury provokes cardiac dysfunction, adverse tissue remodeling, and ultimately heart failure. Stem cell replacement therapy appears to be a promising strategy for improving cardiac function, however, challenges involving inadequate stem cell differentiation, engraftment, and survival following transplantation currently impede the efficacy of regeneration protocols. These limitations emphasize the significance of identifying extrinsic factors and corresponding molecular mechanisms regulating cardiac cell differentiation.;Recent reports recognizing a stem cell component in the adult heart (i.e. cardiac stem cells, CSC) have provided additional targets and/or tools for myocardial repair. This investigation verified the presence of CSC in the adult dog heart, described methods to generate three dimensional (3D) cardiac microtissues ('cardiospheres') from CSC, and revealed features of cardiospheres potentially useful for identifying extrinsic procardiogenic factors, evaluating myocardial response to stress, and delivering functional CSC into the damaged heart. Specifically, cardiosphere formation was facilitated by culturing CSC in growth medium on a poly-L-ornithine substratum. Cardiospheres are comprised of interior cells that exhibited characteristics of CSC; differentiating cardiomyocytes at the periphery with organized contractile machinery; and/or vascular cells capable of forming vessel-like networks. Upon co-culture with neonatal cardiomyocytes, spheres developed foci of contracting regions. Furthermore, cardiospheres exhibited increased resistance to oxidative stress and survived subcutaneous injections without undergoing neoplastic transformation further supporting their ability to effectively promote myocardial regeneration. Retinoic acid (RA), the active form of vitamin A, augmented expression of myocyte-specific proteins in cardiospheres, thus, RA may improve the success of cardiac regenerative therapies and provide an appropriate stimulus to model underlying mechanisms fundamental for CSC differentiation. The tendency for cultured stem cells to undergo various levels of multi-lineage commitment is, however, cumbersome for deciphering precise cues that direct cell fate decisions.;In this study, the molecular pathways important for RA-induced cardiac differentiation were examined using h9c2 cardioblasts as a stable cell model. In h9c2 cells, RA treatment promoted transcriptional enhancement of the muscle-enriched gene regulatory protein MEF2C, morphological alterations indicative of differentiation, and a robust increase in expression of myocyte differentiation genes including cardiac myosin heavy chain (cMHC) and ventricular myosin light chain-2 (vMLC2). These changes were preceded by rapid events involving elevation of intracellular Ca2+ and phosphorylation of p38 MAPK. The effects of RA were attenuated using Ca2+ buffering agents or chemical inhibitors of L-type Ca2+ channels (LTCC) and the phosphatase calcineurin, but not by RA receptor antagonists. Furthermore, overexpression of dominant negative (dn) MEF2C, dnp38 MAPK, or CAIN, a physiological calcineurin inhibitor, abrogated MEF2 activity and RA-induced differentiation. These results imply that RA promotes cardiomyocyte differentiation, independent of RA response element activation, via induction of Ca2+-regulated signaling pathways by activating the LTCC-calcineurin/p38MAPK-MEF2 axis. Taken together, these findings enhance our understanding of extrinsic factors and molecular mechanisms indispensible for myocyte differentiation and subsequently provide novel therapeutic targets and cellular tools for regeneration and repair of damaged myocardium.
机译:缺血性损伤后心肌再生不足会引起心脏功能障碍,不良的组织重塑,并最终导致心力衰竭。干细胞替代疗法似乎是改善心脏功能的一种有前途的策略,但是,涉及干细胞分化,移植和移植后存活不足的挑战目前阻碍了再生方案的有效性。这些局限性强调了识别外在因素和调节心肌细胞分化的相应分子机制的重要性。最近的报道表明,成年心脏中的干细胞成分(即心脏干细胞,CSC)为心肌修复提供了其他靶标和/或工具。这项研究证实了成年狗心脏中存在CSC,描述了从CSC生成三维(3D)心脏微组织(“ cardiospheres”)的方法,并揭示了可用于识别外在性心源性因素,评估心肌对压力反应的心球特征,并将功能正常的CSC输送到受损的心脏。具体地,通过在聚-L-鸟氨酸基质上的生长培养基中培养CSC来促进心球形成。心球由具有CSC特征的内部细胞组成。通过有组织的收缩机制使周围的心肌细胞分化;和/或能够形成血管样网络的血管细胞。与新生儿心肌细胞共培养后,球体形成了收缩区域的病灶。此外,心球对氧化应激表现出增强的抵抗力,并且在皮下注射中存活下来而未经历赘生性转化,进一步支持了它们有效促进心肌再生的能力。维甲酸(RA)的活性形式视黄酸(RA)可以增加心肌细胞中心肌细胞特异性蛋白的表达,因此RA可以改善心脏再生疗法的成功率,并提供适当的刺激因素来为CSC分化的基本机制建模。然而,培养的干细胞趋于经历各种水平的多谱系承诺的趋势对于破译指导细胞命运决定的精确线索非常繁琐。;在这项研究中,使用h9c2成心脏细胞检查了对RA诱导的心脏分化重要的分子途径作为稳定的细胞模型。在h9c2细胞中,RA治疗促进了富含肌肉的基因调节蛋白MEF2C的转录增强,指示分化的形态学改变以及包括心肌肌球蛋白重链(cMHC)和心室肌球蛋白轻链2在内的心肌细胞分化基因表达的强劲增加。 (vMLC2)。这些变化发生在涉及细胞内Ca2 +升高和p38 MAPK磷酸化的快速事件之前。使用Ca2 +缓冲剂或L型Ca2 +通道的化学抑制剂(LTCC)和磷酸酶钙调神经磷酸酶可减弱RA的作用,但不能通过RA受体拮抗剂来减弱RA的作用。此外,显性阴性(dn)MEF2C,dnp38 MAPK或CAIN(一种生理性钙调神经磷酸酶抑制剂)的过表达消除了MEF2活性和RA诱导的分化。这些结果暗示RA通过激活LTCC-calcineurin / p38MAPK-MEF2轴来诱导Ca2 +调节的信号通路,从而促进了心肌细胞的分化,而与RA反应元件的激活无关。综上所述,这些发现增强了我们对肌细胞分化必不可少的外在因素和分子机制的理解,并随后提供了新颖的治疗靶标和细胞工具来再生和修复受损的心肌。

著录项

  • 作者

    Bartosh, T. J.;

  • 作者单位

    University of North Texas Health Science Center at Fort Worth.;

  • 授予单位 University of North Texas Health Science Center at Fort Worth.;
  • 学科 Biology Molecular.;Biology Cell.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 293 p.
  • 总页数 293
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学;细胞生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号