首页> 外文学位 >Understanding groundwater dynamics in structurally heterogeneous aquifers.
【24h】

Understanding groundwater dynamics in structurally heterogeneous aquifers.

机译:了解结构非均质含水层中的地下水动力学。

获取原文
获取原文并翻译 | 示例

摘要

Heterogeneous geologic systems often contain discrete structural elements such as faults, fractures, and sedimentary structures like coarse-grained channel deposits. These structures are characterized by hydraulic properties that are substantially different from the properties of surrounding material. Thus, the spatial arrangement and geometry of structures represents key heterogeneity that can strongly affect groundwater dynamics. By considering relevant field data and through the use of numerical modeling, this research explores the flow impact of subsurface structures in clastic sedimentary systems. Also investigated in this work is the importance of connections between structures.;In the first part of this dissertation, a theoretical study is presented to investigate subsurface fluid flow in the presence of high-permeability (high-k) structures. A new directed percolation model is developed to generate synthetic channel networks. The model is flexible and is capable of producing networks with broadly varying geometrical properties. The channels serve as high-k structures and are embedded within a uniform, less permeable matrix material. Two-dimensional, steady-state flow simulations are performed to explore the controls on fluid flow behavior in the channel-matrix systems. Numerous systems with differing network properties are considered. The main result of this effort is a new qualitative and quantitative understanding that relates the effective permeability tensor to geometrical properties of the channel network. It is demonstrated that, for the range of network geometries and hydraulic properties considered, the effective permeability is a predictable function of the channel tortuosity, channel network fractal dimension, and the channel-matrix permeability contrast.;The second major contribution of this dissertation involves the use of an inverse modeling technique to investigate field observations of non-ideal hydraulic response. Field data are from the Lawrence Livermore National Laboratory (LLNL). The structurally heterogeneous aquifer underlying LLNL is characterized by discrete channel deposits contained within finer-grained and less permeable floodplain deposits. Aquifer-test data from the site reveal a complex response to pumping that cannot be explained using standard analytical models. To investigate how this response behavior is influenced by the sedimentary architecture, a simulation-inversion methodology is developed. The method couples a multiple-point geostatistical model with a dynamic groundwater flow model. The geostatistical model simulates the distribution of channel and floodplain material, conditional to direct data (observed geologic material) at borehole locations. The dynamic flow model simulates the effects of pumping for a given geostatistical realization of the aquifer architecture. Application of the inverse technique leads to the identification of specific channel structures, which offer an explanation for the interesting aquifer-test observations. Shortest-path analysis demonstrates how long-range, high-k channel connections can have a critical impact on subsurface hydraulic response.
机译:非均质地质系统通常包含离散的结构元素,例如断层,裂缝和沉积结构,例如粗粒河道沉积物。这些结构的特点是水力特性与周围材料的特性大不相同。因此,结构的空间排列和几何形状代表了可能严重影响地下水动力学的关键异质性。通过考虑相关的现场数据并通过使用数值模型,本研究探索了碎屑沉积系统中地下结构的流动影响。本文还研究了结构之间连接的重要性。在本文的第一部分中,进行了理论研究,以研究存在高渗透率(high-k)结构的地下流体流动。开发了一种新的定向渗滤模型以生成合成渠道网络。该模型非常灵活,能够生成具有广泛变化的几何特性的网络。通道用作高k结构,并嵌入均匀,渗透率较低的基质材料中。进行二维稳态流模拟,以探索通道矩阵系统中流体流动行为的控制。考虑具有不同网络特性的许多系统。这项工作的主要结果是新的定性和定量理解,将有效渗透率张量与通道网络的几何特性相关联。研究表明,对于所考虑的网络几何形状和水力特性,有效渗透率是通道曲率,通道网络分形维数和通道-基质渗透率对比的可预测函数。使用逆建模技术来研究非理想水力响应的现场观察。现场数据来自劳伦斯·利弗莫尔国家实验室(LLNL)。 LLNL下方的结构非均质含水层的特征是细颗粒和低渗透性洪泛区沉积物中所含的离散河道沉积物。现场的含水层测试数据揭示了对抽水的复杂反应,这无法使用标准分析模型来解释。为了研究这种响应行为如何受到沉积构造的影响,开发了一种模拟反演方法。该方法将多点地统计模型与动态地下水流模型耦合在一起。地统计学模型模拟了孔道和洪泛区材料的分布,条件是对钻孔位置的直接数据(观察到的地质材料)有条件。对于给定的含水层结构的地统计实现,动态流模型模拟了抽水的影响。逆向技术的应用导致对特定通道结构的识别,这为有趣的含水层测试观测提供了解释。最短路径分析表明,远距离高k通道连接如何对地下水力响应产生关键影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号