首页> 外文学位 >Advanced high-speed flywheel energy storage systems for pulsed power application.
【24h】

Advanced high-speed flywheel energy storage systems for pulsed power application.

机译:先进的高速飞轮储能系统,用于脉冲功率应用。

获取原文
获取原文并翻译 | 示例

摘要

Power systems on modern commercial transportation systems are moving to more electric based equipment, thus improving the reliability of the overall system. Electrical equipment on such systems will include some loads that require very high power for short periods of time, on the order of a few seconds, especially during acceleration and deceleration. The current approach to solving this problem is sizing the electrical grid for peak power, rather than the average. A method to efficiently store and discharge the pulsed power is necessary to eliminate the cost and weight of oversized generation equipment to support the pulsed power needs of these applications. Highspeed Flywheel Energy Storage Systems (FESS) are effectively capable of filling the niche of short duration, high cycle life applications where batteries and ultra capacitors are not usable. In order to have an efficient high-speed FESS, performing three important steps towards the design of the overall system are extremely vital. These steps are modeling, analysis and control of the FESS that are thoroughly investigated in this dissertation.;This dissertation establishes a comprehensive analysis of a high-speed FESS in steady state and transient operations. To do so, an accurate model for the complete FESS is derived. State space averaging approach is used to develop DC and small-signal AC models of the system. These models effectively simplify analysis of the FESS and give a strong physical intuition to the complete system. In addition, they result in saving time and money by avoiding time consuming simulations performed by expensive packages, such as Simulink, PSIM, etc.;In the next step, two important factors affecting operation of the Permanent Magnet Synchronous Machine (PMSM) implemented in the high-speed FESS are investigated in detail and outline a proper control strategy to achieve the required performance by the system. Next, a novel design algorithm developed by S.P. Bhattacharyya is used to design the control system. The algorithm has been implemented to a motor drive system, for the first time, in this work. Development of the complete set of the current- and speed-loop proportional-integral controller gains stabilizing the system is the result of this implementation.;In the last part of the dissertation, based on the information and data achieved from the analysis and simulations, two parts of the FESS, inverter/rectifier and external inductor, are designed and the former one is manufactured. To verify the validity and feasibility of the proposed controller, several simulations and experimental results on a laboratory prototype are presented.
机译:现代商业运输系统上的动力系统正在转向更多的基于电力的设备,从而提高了整个系统的可靠性。这种系统上的电气设备将包括一些负载,这些负载需要在短时间内(几秒钟左右)非常高的功率,尤其是在加速和减速期间。解决该问题的当前方法是确定电网的峰值功率,而不是平均值。需要一种有效地存储和释放脉冲功率的方法,以消除超大型发电设备的成本和重量,以支持这些应用的脉冲功率需求。高速飞轮储能系统(FESS)有效地填补了短时,高循环寿命应用中无法使用电池和超级电容器的利基市场。为了拥有高效的高速FESS,执行整个系统设计的三个重要步骤极为重要。这些步骤是对FESS的建模,分析和控制的基础,本文对此进行了深入研究。本文对稳态和瞬态运行中的高速FESS进行了全面的分析。为此,导出了完整FESS的准确模型。状态空间平均方法用于开发系统的DC和小信号AC模型。这些模型有效地简化了FESS的分析,并为整个系统提供了强大的物理直觉。此外,它们还避免了由昂贵的程序包(例如Simulink,PSIM等)执行的耗时的仿真工作,从而节省了时间和金钱;下一步,有两个重要因素会影响在其中实现的永磁同步电机(PMSM)的运行详细研究了高速FESS,并概述了一种适当的控制策略,以实现系统所需的性能。接下来,使用由S.P. Bhattacharyya开发的新颖设计算法来设计控制系统。在这项工作中,该算法首次在电机驱动系统上实现。完整的电流和速度环比例积分控制器增益集的开发使系统稳定,这是该实现的结果。在论文的最后一部分,基于从分析和仿真中获得的信息和数据, FESS的两个部分,逆变器/整流器和外部电感器被设计出来,而前者则被制造出来。为了验证所提出控制器的有效性和可行性,提出了一些在实验室原型上的仿真和实验结果。

著录项

  • 作者

    Talebi Rafsanjan, Salman.;

  • 作者单位

    Texas A&M University.;

  • 授予单位 Texas A&M University.;
  • 学科 Engineering Electronics and Electrical.;Energy.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 228 p.
  • 总页数 228
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:38:33

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号