首页> 外文学位 >A new finite element procedure for fatigue life prediction and high strain rate assessment of cold worked Advanced High Strength Steel .
【24h】

A new finite element procedure for fatigue life prediction and high strain rate assessment of cold worked Advanced High Strength Steel .

机译:高强度冷轧高强度钢疲劳寿命预测和高应变率评估的有限元新方法。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents a new finite element procedure for fatigue life prediction and high strain rate assessment of cold worked Advanced High Strength Steel (AHSS). The first part of this research is related to the development of a new finite element procedure from an energy-based fatigue life prediction framework previously developed for prediction of axial, bending and multi-axial fatigue life. The framework for the prediction of fatigue life via energy analysis consists of constitutive laws which correlate the cyclic energy to the amount of energy required to fracture a material. In this study, the energy expressions that construct the new constitutive laws are integrated into a minimum potential energy formulation to develop new finite elements for fatigue life prediction for structural components subjected to axial, bending and multi-axial cyclic loads. The comparison of finite element method (FEM) results to the existing experimental fatigue data verifies the new finite element method for fatigue life prediction. The final output of this finite element analysis is in the form of number of cycles to failure for each element. The performance of the fatigue finite element is demonstrated by the fatigue life predictions from Al 6061-T6 (Aluminum) and Ti-6Al-4V (Titanium Alloy). In addition to developing new fatigue finite elements, a new equivalent stress expression and a new finite element procedure for multiaxail fatigue life prediction are also proposed. In order to develop the new equivalent stress equation, energy expressions that construct the constitutive law are equated in the form of total strain energy and the distortion energy dissipated in a fatigue cycle. The resulting equation is further evaluated to acquire the equivalent stress per cycle using energy based methodologies. The new procedure is applicable to biaxial as well as multiaxial fatigue applications. The second part of this research is related to the development of LSDYNA material model for vehicle crash simulation based on high strain rate assessment of cold worked AHSS. The performance of a vehicle during a crash is an important subject in automobile research. In order to simulate an actual crash using software like LSDYNA, it is desirable to have accurate stress/strain data for materials. The material models available in the literature ignore the effect of cold working on the material and present data only for flat sheets. In this research, the cold worked AHSS with curved cross-section is tested at strain rates of 1000 (in/in)/s and the data is used to develop a corresponding LSDYNA material model for vehicle crash simulation.
机译:本文为冷加工高强钢(AHSS)的疲劳寿命预测和高应变率评估提供了一种新的有限元程序。这项研究的第一部分涉及从基于能量的疲劳寿命预测框架开发新的有限元程序,该框架先前已开发用于预测轴向,弯曲和多轴疲劳寿命。通过能量分析预测疲劳寿命的框架由本构定律组成,该定律将循环能与使材料断裂所需的能量相关联。在这项研究中,将构成新本构定律的能量表达式整合到最小势能公式中,以开发新的有限元来预测承受轴向,弯曲和多轴循环载荷的结构部件的疲劳寿命。有限元方法(FEM)结果与现有实验疲劳数据的比较验证了用于疲劳寿命预测的新有限元方法。该有限元分析的最终输出是以每个元素失效的周期数的形式。通过Al 6061-T6(铝)和Ti-6Al-4V(钛合金)的疲劳寿命预测证明了疲劳有限元的性能。除了开发新的疲劳有限元外,还提出了用于多轴疲劳寿命预测的新的等效应力表达式和新的有限元程序。为了发展新的等效应力方程,构造本构律的能量表达式以总应变能和在疲劳循环中耗散的形变能的形式来表示。使用基于能量的方法,进一步评估所得方程,以获取每个循环的等效应力。新程序适用于双轴以及多轴疲劳应用。本研究的第二部分涉及基于冷加工AHSS的高应变率评估的用于汽车碰撞模拟的LSDYNA材料模型的开发。碰撞期间的车辆性能是汽车研究中的重要课题。为了使用诸如LSDYNA之类的软件模拟实际的碰撞,需要具有准确的材料应力/应变数据。文献中可用的材料模型忽略了冷加工对材料的影响,仅提供了平板数据。在这项研究中,以1000(in / in)/ s的应变速率测试了具有弯曲横截面的冷加工AHSS,并使用该数据开发了相应的LSDYNA材料模型来进行车辆碰撞仿真。

著录项

  • 作者

    Tarar, Wasim Akram.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 254 p.
  • 总页数 254
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号