首页> 外文学位 >Nonlinear finite element analysis of TWEEL geometric parameter modifications on spoke dynamics during high speed rolling.
【24h】

Nonlinear finite element analysis of TWEEL geometric parameter modifications on spoke dynamics during high speed rolling.

机译:高速轧制过程中TWEEL几何参数修改对辐条动力学的非线性有限元分析。

获取原文
获取原文并翻译 | 示例

摘要

The acoustic signature and noise produced by non-pnuematic wheels such as the Michelin TWEEL(c) is a critical design criteria for automotive and other mobility applications. The TWEEL(TM) structure consists of three basic parts: (1) a circular deformable "shear beam", (2) collapsible spokes and (3) a rigid hub. During high speed rolling the Tweel(TM) produces acoustic noise which is hypothesized to be due to resonant vibration of the Tweel(TM) spokes as they enter the contact region, buckle and then snap back into a state of tension. In order to identify and help understand the causes of acoustic noise for a rolling TWEEL a nonlinear two-dimensional finite element model using ABAQUS has recently been developed by a research team at Clemson and Michelin. The Tweel(TM) model consists of a shear beam modeled as two inextensible membranes with high circumferential modulus separated by a relatively low modulus elastic material. The temporal variation in spoke length as the spoke passes through the contact zone is extracted and used as input to a 3-D model of a single spoke. The 3-D spoke model is able to capture more complex vibration modes of the spoke, including out-of-plane "flapping" behavior that are thought to be a primary source of acoustic excitation. The original model studied changes in uniform spoke thickness and wheel rolling speeds on amplitude and frequency of spoke vibrations.;The TWEEL model used in this work is a continuation and expansion of this model; additional geometric parameters of the spokes are examined including edge scalloping, reduced width with scalloping, curvature change, and variable thickness. In addition, modal frequencies and shapes of the various spoke design strategies are computed and correlated with the frequency response of the out-of-plane spoke vibrations. Results indicate that scalloping the edges of the spoke can dramatically reduce the amplitude of vibration, but do not have a strong effect on frequency peaks. An optimal amount of scalloping was determined which reduces maximum vibration amplitude to an asymptotic value. Changes in spoke thickness do not significantly affect the frequency, but can affect the amplitude of vibration. Changes in spoke width do not appear to affect either frequency or amplitude significantly. Spokes with smaller curvature resulted in a load-displacement curve which indicates higher wheel stiffness and produced higher vibration frequencies but with lower amplitude when compared to spokes with bigger curvature.;In previous models, the dynamic loading and rolling steps where performed using ABAQUS/Explicit with a restart from a steady-state cooling analysis performed in ABAQUS/Standard. In this work, additional models are developed and compared where the dynamic loading and rolling steps are performed with restart from a transient cooling analysis using ABAQUS/Explicit and an analysis with no cooling step but an initial defined pre-tension. Results obtained from these alternative methods for modeling pretension produced a spoke-length profile with reduced amplitude high-frequency oscillations.
机译:非充气车轮(例如米其林TWEEL(c))产生的声学特征和噪声是汽车和其他移动应用的关键设计标准。 TWEEL™结构由三个基本部分组成:(1)圆形可变形的“剪切梁”,(2)可折叠辐条,以及(3)刚性轮毂。在高速轧制期间,Tweel TM产生声噪声,据推测是由于当它们进入接触区域,弯曲并随后恢复到张紧状态时,Tweel TM辐条的共振振动。为了识别并帮助理解滚动TWEEL的噪声原因,Clemson和Michelin的研究团队最近开发了一种使用ABAQUS的非线性二维有限元模型。 Tweel TM模型由剪切梁模型组成,该剪切梁被建模为具有相对较高模量的弹性材料隔开的具有高周向模量的两个不可伸长的膜。当辐条经过接触区时,辐条长度的时间变化被提取出来,并用作单个辐条的3D模型的输入。 3-D辐条模型能够捕获辐条的更复杂的振动模式,其中包括被认为是声激发的主要来源的平面外“拍打”行为。原始模型研究了轮辐均匀厚度和车轮滚动速度对轮辐振动幅度和频率的变化。; TWEEL模型是该模型的延续和扩展;检查轮辐的其他几何参数,包括边缘扇形,通过扇形减小的宽度,曲率变化和可变厚度。另外,计算各种辐条设计策略的模态频率和形状,并将其与面外辐条振动的频率响应相关联。结果表明,使辐条边缘扇贝形可以显着降低振动幅度,但对频率峰值的影响不大。确定了最佳的扇贝形状,将最大振动幅度减小到渐近值。辐条厚度的变化不会显着影响频率,但会影响振动幅度。辐条宽度的变化似乎不会显着影响频率或幅度。与较小曲率的辐条相比,产生的载荷-位移曲线表明车轮刚度较高,产生的振动频率较高,但与较大曲率的辐条相比,振幅较小。在以前的模型中,使用ABAQUS / Explicit进行的动态加载和滚动步骤从ABAQUS / Standard中执行的稳态冷却分析重新开始。在这项工作中,开发并比较了其他模型,在这些模型中,使用ABAQUS / Explicit从瞬态冷却分析中重新启动并执行动态加载和轧制步骤,以及没有冷却步骤但具有初始定义的预张力的分析。从这些用于模拟预应力的替代方法中获得的结果产生了具有减小的振幅高频振荡的轮辐长度轮廓。

著录项

  • 作者

    Ramachandran, Maya.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Engineering Mechanical.
  • 学位 M.S.
  • 年度 2008
  • 页码 230 p.
  • 总页数 230
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号