首页> 外文学位 >Experimental and computational investigations of hydrogen safety, dispersion and combustion for transportation applications.
【24h】

Experimental and computational investigations of hydrogen safety, dispersion and combustion for transportation applications.

机译:运输应用中氢气安全性,分散性和燃烧的实验和计算研究。

获取原文
获取原文并翻译 | 示例

摘要

Hydrogen is an energy carrier that can be produced from a variety of sources, offering one of the viable solutions to the increasing demands for clean and sustainable energy. Compared to the conventional fuels, hydrogen has distinct properties that need to be properly accounted for during its safer storage and delivery as well as more efficient and cleaner utilization. The broader objective of this study is to contribute to the scientific knowledge necessary to overcome key technical barriers to the widespread implementation of hydrogen in transportation applications. Specifically, lower flammability limit of hydrogen is first measured with an enhanced experimental setup and then supported with a theoretical analysis in order to provide safety guidelines for hazardous conditions. Small and large hydrogen releases are computationally investigated under different conditions corresponding to potential accidental release scenarios. This involves quantifying the relative roles of buoyancy, diffusion and momentum during hydrogen transient mixing in air and the associated flammable zones in a simple geometry. The numerical predictions are extended to a practical geometry in which high-pressure unsteady hydrogen leaks occur due to a catastrophic failure of a storage tank in a typical mobile hydrogen unit. Additionally, the combustion, performance and emission characteristics of a hydrogen-powered internal combustion engine are simulated by incorporating fuel-specific sub-models into a quasi-dimensional model, which is subsequently validated against independent data and utilized to quantify the effect of exhaust gas recirculation on emissions of oxides of nitrogen. Such reasonably fast and accurate predictive tools are essential to effectively design and optimize hydrogen engines for higher efficiency and near-zero emissions in the automotive industry.
机译:氢是一种能源载体,可以从多种来源产生,为日益增长的对清洁和可持续能源的需求提供了可行的解决方案之一。与常规燃料相比,氢具有独特的特性,在更安全的存储和运输以及更有效和更清洁的利用过程中需要适当考虑氢。这项研究的更广泛的目标是为克服氢运输应用中广泛应用的关键技术障碍所必需的科学知识做出贡献。具体而言,首先通过增强的实验设置来测量氢气的较低可燃极限,然后再进行理论分析以为危险情况提供安全指导。在与潜在的意外排放情景相对应的不同条件下,对氢气的释放量进行了研究。这涉及以简单的几何形状量化空气和相关的可燃区中氢瞬态混合过程中浮力,扩散和动量的相对作用。数值预测扩展到实际的几何形状,在该几何形状中,由于典型的移动式氢气装置中储罐的灾难性故障,导致高压不稳定氢气泄漏。此外,通过将特定于燃料的子模型纳入准维模型来模拟氢动力内燃发动机的燃烧,性能和排放特性,然后针对独立数据对其进行验证并用于量化废气的影响再循环氮氧化物的排放。这种合理快速,准确的预测工具对于有效设计和优化氢发动机,以提高汽车行业的效率和近乎零排放至关重要。

著录项

  • 作者

    Vudumu, Shravan Kumar.;

  • 作者单位

    Missouri University of Science and Technology.;

  • 授予单位 Missouri University of Science and Technology.;
  • 学科 Alternative Energy.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:36:50

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号