首页> 外文学位 >Synthesis and characterization of ultra-incompressible superhard borides.
【24h】

Synthesis and characterization of ultra-incompressible superhard borides.

机译:超不可压缩超硬硼化物的合成与表征。

获取原文
获取原文并翻译 | 示例

摘要

The search for ultra-incompressible, superhard materials holds both scientific and practical interest due to their use as abrasives, cutting tools and coatings. The quest for such materials, however, rarely strays from high pressure synthetic methods, which require gigapascals of applied pressure. This dissertation illustrates how light elements can be incorporated into transition metals to replace weak metallic bonds with strong covalent bonds to improve a material's mechanical properties.;By combining rhenium, a high valence electron density metal, with boron, a covalently bonding p-block element, we can synthesize rhenium diboride at ambient pressure. Hardness testing and scratches left on a diamond surface assert the superhard nature of ReB2. High pressure diffraction experiments indicate that ReB2 is ultra-incompressible and able to support a remarkably high differential stress. In an effort to understand the plastic response of ReB2, the indentation size effect observed in hardness measurements is analyzed within the context of conventional plasticity theories. The low load behavior of ReB2 is accurately described by a strain gradient plasticity model. The results suggest that the ability of ReB2 to scratch diamond is explained by its superhard nature at low loads.;The anisotropic properties of ReB2 are studied using crystals prepared from a metal flux. Hardness testing indicates that the (002) plane possesses the highest hardness. The elastic anisotropy is determined using indentation moduli, confirming the hardness anisotropy. Electrical resistivity measurements demonstrate that ReB2 is the hardest metallic material.;In an effort to increase the hardness via particle size effects nanocrystalline ReB2 was consolidated using spark plasma sintering. A linear correlation was found to exist between hardness and pellet density with a maximum predicted hardness of 56 GPa.;The mechanical properties of ultra-incompressible hard borides, Ru 1-xOsxB2, are also studied. Bulk modulus and hardness vary linearly with composition, while the differing behavior among end-member can be explained by relativistic effects, core electron density, and differences in the cohesive energy of the parent metals.;Finally, several projects are summarized that are predicted to form new superhard compounds: Tri-arc crystal growth of borides, ReB2-structured materials, metal tetraborides, and boron-rich crystals.
机译:由于其用作研磨剂,切削工具和涂料,因此寻求超不可压缩的超硬材料具有科学和实践意义。然而,对于这种材料的追求很少因高压合成方法而产生,这些方法需要数十亿帕的施加压力。这篇论文说明了轻元素可如何掺入过渡金属中,以强共价键取代弱金属键,从而改善材料的机械性能。通过将高价电子密度金属en与共价键合的p嵌段元素硼结合使用,我们可以在环境压力下合成二硼化rh。硬度测试和在钻石表面留下的划痕证实了ReB2的超硬特性。高压衍射实验表明,ReB2是超压缩性的,能够承受非常高的压差。为了理解ReB2的塑性响应,在常规塑性理论的背景下分析了硬度测量中观察到的压痕尺寸效应。 ReB2的低负荷行为可以通过应变梯度可塑性模型准确描述。结果表明,ReB2划伤金刚石的能力是由其在低负荷下的超硬特性来解释的。; ReB2的各向异性性质是使用金属熔剂制备的晶体研究的。硬度测试表明(002)平面具有最高的硬度。使用压痕模量确定弹性各向异性,从而确认硬度各向异性。电阻率测量表明ReB2是最坚硬的金属材料。为了通过粒度效应增加硬度,使用火花等离子体烧结对纳米晶体ReB2进行了固结。发现硬度与颗粒密度之间存在线性关系,最大预测硬度为56 GPa。;还研究了超不可压缩硬质硼化物Ru 1-xOsxB2的力学性能。体积模量和硬度随组成线性变化,而末端成员之间的不同行为可以通过相对论效应,核心电子密度和母体金属的内聚能差异来解释。最后,总结了几个项目,这些项目预计会形成新的超硬化合物:硼化物,ReB2结构材料,四硼化金属和富硼晶体的三弧晶体生长。

著录项

  • 作者

    Levine, Jonathan Benjamin.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Chemistry Inorganic.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 190 p.
  • 总页数 190
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号