首页> 外文学位 >Ground state properties and applications of dipolar ultracold gases.
【24h】

Ground state properties and applications of dipolar ultracold gases.

机译:偶极超冷气体的基态特性和应用。

获取原文
获取原文并翻译 | 示例

摘要

This thesis contains a study of ultracold paramagnetic atoms or polar molecules characterized by a long-range anisotropic dipolar interaction. We particularly focus on two aspects of ultracold dipolar gases. In the first problem the ground state properties of dipolar Bose-Einstein condensates (BEC) are investigated. This problem has gained importance due to recent experimental advances in achieving a condensate of Chromium atoms and ongoing research to produce quantum degenerate polar molecules. In the second problem, we consider possible applications of ultracold polar molecules to rotation sensing and interferometry.;First, we concentrate on the interplay between the trapping geometry and dipole-dipole interaction for a polarized dipolar bosonic condensate. As the dipole dipole interaction is attractive along the polarized direction, the lowest energy state of the BEC is always a collapsed state. However by applying a trapping potential along the polarization direction it is possible to achieve a metastable dipolar BEC. By numerically solving the Gross-Pitaevskii equation, we show that below a critical interaction strength, a metastable state exists depending on the trapping geometry. We also show that a novel feature of dipolar BEC is the appearance of different structural metastable ground states for certain combinations of trapping geometry and particle number. Next, by mixing in single component fermions we show that dipolar BEC can be stabilized against collapse in pancake shaped or cylindrical traps. We also show that the excitation spectrum of the BEC may have a minimum for non-zero momentum, termed a "roton minimum". This minimum leads to a transition to stable or metastable density-wave states depending on the density of the bosons and boson-fermion interaction strength.;In the second problem, we study a proposal for a large-angle coherent beam splitter for polar molecules. By taking into account the effect of a quasi-static external electric field on the rotational levels of the polarized molecules we show that it is possible to coherently split a stationary cloud of molecules into two counter-propagating components. We then investigate the effect of longitudinal acceleration on the transverse motion of the particles, assuming that the longitudinal motion of the molecules can be approximated classically by a wave packet with some mean velocity while the transverse motion is governed by quantum mechanics. We propose a particular time-dependent shape of acceleration to minimize the excitations in the transverse motion. Our theory is also applicable to the general case of particles moving along a circular guide with time-dependent longitudinal velocity. In addition, we include the effects of velocity fluctuations due to noise in the accelerating field.
机译:本论文包含对超冷顺磁性原子或极性分子的研究,其特征是长距离各向异性偶极相互作用。我们特别关注超冷偶极气体的两个方面。在第一个问题中,研究了偶极玻色-爱因斯坦凝聚物(BEC)的基态性质。由于最近在实现铬原子的凝聚物方面的实验进展以及正在进行的生产量子简并极性分子的研究,这一问题变得越来越重要。在第二个问题中,我们考虑了超冷极性分子在旋转传感和干涉测量中的可能应用。首先,我们关注极化偶极玻色子的俘获几何形状和偶极-偶极相互作用之间的相互作用。由于偶极子的相互作用沿极化方向具有吸引力,因此BEC的最低能量状态始终为塌陷状态。然而,通过沿极化方向施加俘获电势,有可能实现亚稳态的偶极BEC。通过数值求解Gross-Pitaevskii方程,我们表明,在临界相互作用强度以下,根据陷阱的几何形状,存在亚稳态。我们还表明,偶极BEC的一个新颖特征是对于捕获几何形状和粒子数的某些组合,出现了不同的结构亚稳态基态。接下来,通过混合单组分费米子,我们表明偶极BEC可以稳定以防止在煎饼形或圆柱形陷阱中崩溃。我们还表明,对于非零动量,BEC的激发光谱可能具有最小值,称为“鲁顿最小值”。该最小值导致根据玻色子的密度和玻色子-费米子相互作用强度而转变为稳定或亚稳态的密度波状态。在第二个问题中,我们研究了针对极性分子的大角度相干分束器的建议。通过考虑准静态外部电场对极化分子的旋转能级的影响,我们表明可以将分子的平稳云团连贯地分裂为两个反向传播的分量。然后,我们假设粒子的纵向运动可以经典地通过具有一定平均速度的波包近似地进行,而横向运动由量子力学控制,则可以研究纵向加速度对粒子横向运动的影响。我们提出了一种特定于时间的加速度形状,以最大程度地减少横向运动中的激励。我们的理论也适用于粒子沿圆形导板以时间相关的纵向速度运动的一般情况。此外,我们还包括由于加速场中的噪声引起的速度波动的影响。

著录项

  • 作者

    Dutta, Omjyoti.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Physics Condensed Matter.;Physics Atomic.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 122 p.
  • 总页数 122
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号