首页> 外文学位 >High-performance three-dimensional image processing architectures for image-guided interventions.
【24h】

High-performance three-dimensional image processing architectures for image-guided interventions.

机译:用于图像引导干预的高性能三维图像处理体系结构。

获取原文
获取原文并翻译 | 示例

摘要

Minimally invasive image-guided interventions (IGIs) are time and cost efficient, minimize unintended damage to healthy tissues, and lead to faster patient recovery. Advanced three-dimensional (3D) image processing is a critical need for navigation during IGIs. However, achieving on-demand performance, as required by IGIs, for these image processing operations using software-only implementations is challenging because of the sheer size of the 3D images, and memory and compute intensive nature of the operations. This dissertation, therefore, is geared toward developing high-performance 3D image processing architectures, which will enable improved intraprocedural visualization and navigation capabilities during IGIs.;In this dissertation we present an architecture for real-time implementation of 3D filtering operations that are commonly employed for preprocessing of medical images. This architecture is approximately two orders of magnitude faster than corresponding software implementations and is capable of processing 3D medical images at their acquisition speeds.;Combining complementary information through registration between pre- and intraprocedural images is a fundamental need in the IGI workflow. Intensity-based deformable registration, which is completely automatic and locally accurate, is a promising approach to achieve this alignment. These algorithms, however, are extremely compute intensive, which has prevented their clinical use. We present an FPGA-based architecture for accelerated implementation of intensity-based deformable image registration. This high-performance architecture achieves over an order of magnitude speedup when compared with a corresponding software implementation and reduces the execution time of deformable registration from hours to minutes while offering comparable image registration accuracy.;Furthermore, we present a framework for multiobjective optimization of finite-precision implementations of signal processing algorithms that takes into account multiple conflicting objectives such as implementation accuracy and hardware resource consumption. The evaluation that we have performed in the context of FPGA-based image registration demonstrates that such an analysis can be used to enhance automated hardware design processes, and efficiently identify a system configuration that meets given design constraints. In addition, we also outline two novel clinical applications that can directly benefit from these developments and demonstrate the feasibility of our approach in the context of these applications. These advances will ultimately enable integration of 3D image processing into clinical workflow.
机译:微创图像引导干预(IGI)具有时间和成本效益,可最大程度地减少对健康组织的意外伤害,并能使患者更快地康复。在IGI期间,导航的高级需求是高级三维(3D)图像处理。但是,由于3D图像的巨大大小以及操作的内存和计算密集性,使用IGI要求使用纯软件实现这些图像处理操作的按需性能具有挑战性。因此,本论文旨在开发高性能3D图像处理体系结构,这将提高IGI期间的过程内可视化和导航功能。本论文中,我们提出了一种实时实现3D过滤操作的体系结构。用于医学图像的预处理。这种体系结构比相应的软件实现快大约两个数量级,并且能够以其采集速度处理3D医学图像。通过在过程前图像和过程中图像之间进行配准来组合补充信息是IGI工作流程的基本需求。完全自动且局部精确的基于强度的可变形配准是实现此对齐的一种有前途的方法。但是,这些算法的计算量非常大,这阻碍了它们的临床应用。我们提出了一种基于FPGA的架构,用于加速实现基于强度的可变形图像配准。与相应的软件实现相比,这种高性能架构可实现超过一个数量级的加速,并将可变形配准的执行时间从数小时缩短至数分钟,同时提供可比拟的图像配准精度。此外,我们提出了一个有限多目标优化的框架信号处理算法的高精度实现,其中考虑了多个相互冲突的目标,例如实现精度和硬件资源消耗。我们在基于FPGA的图像配准的背景下进行的评估表明,这种分析可用于增强自动化的硬件设计流程,并有效地识别满足给定设计约束的系统配置。此外,我们还概述了可以直接从这些开发中受益的两种新颖的临床应用,并在这些应用的背景下证明了我们方法的可行性。这些进步最终将使3D图像处理集成到临床工作流程中。

著录项

  • 作者

    Dandekar, Omkar.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 220 p.
  • 总页数 220
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号