首页> 外文学位 >Efficient grid-based techniques for density functional theory .
【24h】

Efficient grid-based techniques for density functional theory .

机译:高效的基于网格的密度泛函理论技术。

获取原文
获取原文并翻译 | 示例

摘要

Understanding the chemical and physical properties of molecules and materials at a fundamental level often requires quantum-mechanical models for these substance's electronic structure. This type of many body quantum mechanics calculation is computationally demanding, hindering its application to substances with more than a few hundreds atoms. The supreme goal of many researches in quantum chemistry---and the topic of this dissertation---is to develop more efficient computational algorithms for electronic structure calculations. In particular, this dissertation develops two new numerical integration techniques for computing molecular and atomic properties within conventional Kohn-Sham-Density Functional Theory (KS-DFT) of molecular electronic structure.;The second technique is a grid-based method for computing atomic properties within QTAIM. It was also implemented in deMon2k. The performance of the method was tested by computing QTAIM atomic energies, charges, dipole moments, and quadrupole moments. For medium accuracy, our method is the fastest one we know of.;The first of these grid-based techniques is based on the transformed sparse grid construction. In this construction, a sparse grid is generated in the unit cube and then mapped to real space according to the pro-molecular density using the conditional distribution transformation. The transformed sparse grid was implemented in program deMon2k, where it is used as the numerical integrator for the exchange-correlation energy and potential in the KS-DFT procedure. We tested our grid by computing ground state energies, equilibrium geometries, and atomization energies. The accuracy on these test calculations shows that our grid is more efficient than some previous integration methods: our grids use fewer points to obtain the same accuracy. The transformed sparse grids were also tested for integrating, interpolating and differentiating in different dimensions (n = 1,2,3,6).
机译:从根本上理解分子和材料的化学和物理特性通常需要这些物质的电子结构的量子力学模型。这种类型的许多体量子力学计算在计算上要求很高,从而阻碍了其在具有数百个以上原子的物质中的应用。量子化学许多研究的最高目标(也是本论文的主题)是为电子结构计算开发更有效的计算算法。特别是,本文在分子电子结构的传统Kohn-Sham-Density泛函理论(KS-DFT)的基础上,开发了两种新的数值积分技术来计算分子和原子性质。第二种技术是基于网格的原子性质计算方法。在QTAIM中。它也在deMon2k中实现。通过计算QTAIM原子能,电荷,偶极矩和四极矩测试了该方法的性能。对于中等精度,我们的方法是最快的方法。这些基于网格的技术中的第一个基于变换后的稀疏网格结构。在这种构造中,在单位立方体中生成了一个稀疏网格,然后使用条件分布变换根据亲分子密度将其映射到实际空间。变换后的稀疏网格在程序deMon2k中实现,在该程序中,它用作KS-DFT过程中交换相关能量和电势的数值积分器。我们通过计算基态能量,平衡几何形状和雾化能量来测试网格。这些测试计算的准确性表明,我们的网格比以前的某些积分方法更有效:我们的网格使用更少的点来获得相同的精度。还测试了变换后的稀疏网格在不同维度上的积分,内插和微分(n = 1,2,3,6)。

著录项

  • 作者单位

    McMaster University (Canada).;

  • 授予单位 McMaster University (Canada).;
  • 学科 Chemistry Physical.;Physics Condensed Matter.;Physics Molecular.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 220 p.
  • 总页数 220
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号