首页> 外文学位 >Dissecting the molecular mechanisms underlying synpase development and neuronal functions in Caenorhabditiselegans.
【24h】

Dissecting the molecular mechanisms underlying synpase development and neuronal functions in Caenorhabditiselegans.

机译:解剖秀丽隐杆线虫突触发展和神经元功能的分子机制。

获取原文
获取原文并翻译 | 示例

摘要

The development and function of the nervous system is under delicate regulation of diverse tissue-derived signals in multi-cellular organisms. In Dr. Nonet's lab, I am using the model organism Caenorhabditis elegans to ask two basic questions: (1) How do different tissues in an organism coordinate to regulate neural functions and behaviors? (2) What controls the development of synapse, the basic unit of the nervous system? These questions divide my dissertation into three parts, with the first two parts related to the first question and the third part to the second question.;In the first part of this dissertation, I present work that demonstrates the role of the C. elegans intestine as an endocrine organ in regulating the rhythmic defecation behavior (Chapter 2). The C. elegans defecation behavior consists of three well-coordinated muscle contractions that enable the nematode to expel intestinal contents out to the environment. Genetic and cell biology analyses showed that the early and late muscle contractions involve activities in the intestine and GABAergic neurons (AVL and DVB), respectively, while it remains unclear how the intestinal event is coordinated with later activation of GABAergic neurons. Using molecular genetics and cell biology approaches, we demonstrate that the exocytic protein AEX-4 and proprotein convertase AEX-5 function in the worm intestine to control the defecation motor program. When expressed in the intestine, AEX-5 is secreted into the pseudocoelom, and this secretion is blocked by AEX-4 disruption. Moreover, we show that the G-protein coupled receptor (GPCR) AEX-2 functions in GABAergic neurons to regulate defecation behavior, and it is genetically downstream of intestinal AEX-4 and AEX-5 signals. We also demonstrate that the stimulatory Galpha pathway relays the AEX-2 signal in GABAergic neurons. Together, our results provide evidence that the C. elegans intestine is able to modulate neuronal function by secretory signals.;In the second part of this dissertation, I present work that demonstrates the role of the C. elegans intestine in modulating the cholinergic neurotransmission (Chapter 3). C. elegans utilizes acetyl choline as a neurotransmitter at its neuromuscular junctions (NMJs) to control muscle contractions and locomotion related behaviors. Using molecular genetics, pharmacological, and physiological approaches, we show that the proprotein convertase AEX-5 is required in the intestine to maintain normal cholinergic transmission in the nematode. In addition, we find that the GPCR AEX-2 functions in the GABAergic neurons to maintain cholinergic transmission level, and the stimulatory Galpha pathway is genetically downstream of AEX-2. Interestingly, we find that although both the defecation motor program and the cholinergic transmission modulation involve intestinal signals and neuronal G-protein pathways, they depend on different downstream molecules: while the defecation requires GABA to activate the enteric muscle contraction in the last step of the defecation, the modulation of cholinergic transmission depends on neuropeptide processing enzymes EGL-3 and EGL-21. As GABAergic neurons do not directly synapse on cholinergic neurons in C. elegans, we speculate that the peptide signals act in a paracrine manner on cholinergic neurons. This suggests the C. elegans intestine could function as an endocrine organ to modulate multiple aspects of neuronal functions.;In the last part of this dissertation, I focus on the early neural development of C. elegans and I present the preliminary work on the focal adhesion complex molecule ZYX-1 for its role in mechanosensory synapse development (Chapter 4). We cloned the zyx-1 allele from the genetic screen that looked for worms defective in PLM synaptic patch formation. Using time course imaging analysis of fluorescence labeled PLM neurons, we show that zyx-1 mutants are able to form synapses during early development, while they fail to maintain the synapse to adulthood. In addition, we demonstrate that ZYX-1 acts cell-autonomously in mechanosensory neurons to regulate PLM synapse maintenance. We are currently working to dissect the molecular mechanisms that underlie ZYX-1's function in synapse maintenance. I expect the study will shed light on our understanding of the molecular mechanisms underlying neural development.
机译:神经系统的发育和功能处于多细胞生物体中各种组织衍生信号的精细调节之下。在Nonet博士的实验室中,我正在使用模型生物秀丽隐杆线虫提出两个基本问题:(1)生物体内的不同组织如何协调以调节神经功能和行为? (2)什么控制着突触的发展,突触是神经系统的基本单位?这些问题将我的论文分为三部分,前两部分与第一个问题有关,第三部分与第二个问题有关。在本文的第一部分中,我提出了证明秀丽隐杆线虫肠的作用的工作。作为调节节律性排便行为的内分泌器官(第2章)。秀丽隐杆线虫的排便行为由三个协调良好的肌肉收缩组成,这些收缩使线虫能够将肠内容物排出到环境中。遗传和细胞生物学分析表明,早期和晚期肌肉收缩分别涉及肠和GABA能神经元(AVL和DVB)的活动,但尚不清楚肠事件如何与后来的GABA能神经元激活相协调。使用分子遗传学和细胞生物学方法,我们证明了胞外蛋白AEX-4和原蛋白转化酶AEX-5在蠕虫小肠中起作用,以控制排便运动程序。当在肠中表达时,AEX-5被分泌到假腔中,并且该分泌被AEX-4破坏所阻断。此外,我们表明,G蛋白偶联受体(GPCR)AEX-2在GABA能神经元中调节排便行为,并且在肠道AEX-4和AEX-5信号的遗传下游。我们还证明了刺激性Galpha通路会在GABA能神经元中传递AEX-2信号。在一起,我们的结果提供了证据,秀丽隐杆线虫小肠能够通过分泌信号调节神经元功能。;在本论文的第二部分中,我提出了证明秀丽隐杆线虫小肠在调节胆碱能神经传递中的作用(第3章)。秀丽隐杆线虫在其神经肌肉接头(NMJ)处利用乙酰胆碱作为神经递质来控制肌肉收缩和与运动有关的行为。使用分子遗传学,药理学和生理学的方法,我们表明,在肠道中需要前蛋白转化酶AEX-5来维持线虫中的正常胆碱能传递。此外,我们发现,GPCR AEX-2在GABA能神经元中发挥功能,以维持胆碱能传递水平,而刺激性Galpha通路在基因上位于AEX-2的下游。有趣的是,我们发现,尽管排便运动程序和胆碱能传递调节都涉及肠信号和神经元G蛋白途径,但它们依赖于不同的下游分子:而排便需要GABA来激活肠壁收缩的最后一步。排便时,胆碱能传递的调节取决于神经肽加工酶EGL-3和EGL-21。由于GABA能神经元并不直接突触线虫中的胆碱能神经元,因此我们推测该肽信号以旁分泌方式作用于胆碱能神经元。这表明秀丽隐杆线虫的小肠可以作为内分泌器官来调节神经元功能的多个方面。在本文的最后一部分,我着重于秀丽隐杆线虫的早期神经发育,并在此方面进行了初步的研究。粘附复合物分子ZYX-1在机械感觉突触发展中的作用(第4章)。我们从基因筛选中克隆了zyx-1等位基因,寻找在PLM突触补丁形成中存在缺陷的蠕虫。使用荧光标记的PLM神经元的时程成像分析,我们显示zyx-1突变体能够在早期发育过程中形成突触,而它们却无法维持到成年的突触。此外,我们证明ZYX-1在机械感觉神经元中自主调节细胞,以调节PLM突触的维持。我们目前正在研究构成ZYX-1突触维持功能基础的分子机制。我希望这项研究将为我们对神经发育潜在分子机制的理解提供启发。

著录项

  • 作者

    Luo, Shuo.;

  • 作者单位

    Washington University in St. Louis.;

  • 授予单位 Washington University in St. Louis.;
  • 学科 Biology Neuroscience.;Biology Genetics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 237 p.
  • 总页数 237
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号