首页> 外文学位 >Friction stir welding process and material microstructure evolution modeling in 2000 and 5000 series of aluminum alloy.
【24h】

Friction stir welding process and material microstructure evolution modeling in 2000 and 5000 series of aluminum alloy.

机译:2000和5000系列铝合金的搅拌摩擦焊接工艺及材料组织演变建模。

获取原文
获取原文并翻译 | 示例

摘要

Interactions between the rotating and advancing pin-shaped tool (terminated at one end with a circular-cylindrical shoulder) with the clamped welding-plates and the associated material and heat transport during a Friction Stir Welding (FSW) process are studied computationally using a fully-coupled thermo-mechanical finite-element analysis. To surmount potential numerical problems associated with extensive mesh distortions/entanglement, an Arbitrary Lagrangian Eulerian (ALE) formulation was used which enabled adaptive re-meshing (to ensure the continuing presence of a high-quality mesh) while allowing full tracking of the material free surfaces. To demonstrate the utility of the present computational approach, the analysis is applied to the cases of same-alloy FSW of two Aluminum-alloy grades: (a) AA5083 (a solid-solution strengthened and strain-hardened/stabilized Al-Mg-Mn alloy); and (b) AA2139 (a precipitation hardened quaternary Al-Cu-Mg-Ag alloy). Both of these alloys are currently being used in military-vehicle hull structural and armor systems.;In the case of non-age-hardenable AA5083, the dominant microstructure evolution processes taking place during FSW are extensive plastic deformation and dynamic recrystallization of highly-deformed material subjected to elevated temperatures approaching the melting temperature. To account for the competition between plastic-deformation controlled strengthening and dynamic-recrystallization induced softening phenomena during the FSW process, the original Johnson-Cook strain- and strain-rate hardening and temperature-softening material strength model is modified in the present work using the available recrystallization-kinetics experimental data. In the case of AA2139, in addition to plastic deformation and dynamic recrystallization, precipitates coarsening, over-aging, dissolution and re-precipitation had to be also considered. Limited data available in the open literature pertaining to the kinetics of the aforementioned microstructure-evolution processes are used to predict variation in the material hardness and the residual stresses throughout the various FSW zones of the two alloys. The results showed that with proper modeling of the material behavior under high-temperature/severe-plastic-deformation conditions, significantly improved agreement can be attained between the computed and measured post-FSW residual-stress and material-strength distribution results.;Keywords: Friction Stir Welding; AA5083; AA2139; Johnson-Cook Strength Model; Finite Element Analysis; Hardness Prediction.
机译:利用摩擦搅拌焊(FSW)过程,通过计算研究了旋转和前进的销形工具(一端为圆形圆柱肩部)与夹紧的焊接板之间的相互作用以及相关的材料和热传递。耦合热力有限元分析。为了克服与广泛的网格变形/纠缠相关的潜在数值问题,使用了任意拉格朗日欧拉(ALE)公式,该公式能够进行自适应重新网格化(以确保高质量网格的持续存在),同时允许完全跟踪材料表面。为了证明本计算方法的实用性,将分析应用于两种铝合金等级的相同合金FSW的情况:(a)AA5083(固溶强化和应变硬化/稳定化的Al-Mg-Mn合金); (b)AA2139(一种沉淀硬化的四元Al-Cu-Mg-Ag合金)。这两种合金目前都用于军事车辆的船体结构和装甲系统中;对于不可时效硬化的AA5083,在FSW期间发生的主要微观组织演变过程是广泛的塑性变形和高变形的动态再结晶材料经受接近熔化温度的高温。为了解决FSW过程中塑性变形控制的强化与动态再结晶引起的软化现象之间的竞争,本研究中使用以下方法修改了原始的Johnson-Cook应变和应变速率硬化与温度软化材料强度模型:可获得的重结晶动力学实验数据。对于AA2139,除了塑性变形和动态再结晶外,还必须考虑沉淀物的粗化,过时效,溶解和再沉淀。在公开文献中可得到的与上述微结构演化过程的动力学有关的有限数据被用于预测两种合金在各个FSW区域中材料硬度和残余应力的变化。结果表明,通过对高温/严重塑性变形条件下的材料行为进行正确的建模,可以在计算和测量的FSW后残余应力与材料强度分布结果之间取得显着改善的一致性。搅拌摩擦焊; AA5083; AA2139; Johnson-Cook强度模型;有限元分析;硬度预测。

著录项

  • 作者

    Yalavarthy, Harshavardhan.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Engineering Mechanical.;Engineering Materials Science.
  • 学位 M.S.
  • 年度 2009
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:38:29

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号