首页> 外文学位 >Large scale passive force-displacement and dynamic earth pressure experiments and simulations.
【24h】

Large scale passive force-displacement and dynamic earth pressure experiments and simulations.

机译:大型被动力位移和动态土压力实验和模拟。

获取原文
获取原文并翻译 | 示例

摘要

During strong earthquakes, foundation structures such as bridge abutments and pile caps mobilize resistance due to passive earth pressure. Dynamic earth pressure can also increase the demand placed on retaining walls during earthquake excitation. Current uncertainty in the passive earth pressure load-displacement behavior and the evaluation of dynamic earth pressure during earthquake excitation motivates the large scale experimental and numerical investigation presented in this dissertation.;In the experimental investigations, a 2.15 m high, 5.6 m long, and 2.9 m wide dense, well-graded silty sand backfill is constructed behind a stiff vertical concrete wall inside a large soil container. First, the passive earth pressure load-displacement curve is recorded in two tests. From those tests, the peak passive resistance compares well with the theoretical predictions. Using the test data, a calibrated finite element (FE) model is employed to produce additional load-displacement curves for a wider range of practical applications. A spring model is also developed for representing the passive resistance in dynamic simulations.;Next, dynamic earth pressure is measured in 26 events, as the soil container-wall-backfill configuration is subjected to shake table excitations. With peak input accelerations up to about 0.6 g, the earth pressure resultant force remains close to the static level. Small wall movements coupled with the high backfill stiffness and strength contribute to this favorable response. At higher input acceleration levels, the backfill shear strength is further mobilized, resulting in significant dynamic earth pressure increases. FE simulations support and demonstrate the experimental observations. Results show that accurate consideration of the retaining wall-backfill interaction may result in more realistic dynamic earth pressure predictions than the simplified analytical methods which are currently used in design.;The unique combination of laboratory and large scale test data reveals interesting features regarding backfill soil shear strength. For instance, although the tested backfill soil had only 7% silty fines, cohesion contributed significantly to the passive resistance and helped to limit dynamic earth pressure. The backfill friction angle in the plane strain test configuration was also found to be relatively high, contributing favorably to the response under both passive and dynamic earth pressure loading.
机译:在强烈地震期间,由于被动土压力,诸如桥台和桩帽之类的基础结构会动员阻力。动态土压力还会增加地震激发过程中对挡土墙的需求。被动土压力荷载-位移行为中的当前不确定性以及地震激励过程中的动态土压力评估促使本文进行了大规模的实验和数值研究。在实验研究中,高2.15 m,长5.6 m,并且2.9 m宽的密实度高的粉砂回填土建在一个大型土壤容器内的坚硬垂直混凝土墙后面。首先,在两个测试中记录了被动土压力负荷-位移曲线。从这些测试中,峰值无源电阻可以与理论预测很好地比较。利用测试数据,可以使用校准的有限元(FE)模型来生成更多的载荷-位移曲线,以用于更广泛的实际应用。还开发了一个弹簧模型来表示动态仿真中的被动阻力。接着,随着土壤容器壁回填结构受到振动台激励,在26个事件中测量了动态土压力。在最大输入加速度达到约0.6 g时,土压力合力保持接近静态水平。小壁运动加上高回填刚度和强度有助于这种良好的响应。在较高的输入加速度水平下,回填抗剪强度会进一步动员,从而导致动态土压力显着增加。有限元模拟支持并证明了实验观察。结果表明,与目前设计中使用的简化分析方法相比,对挡土墙-回填土相互作用的准确考虑可能会导致更实际的动态土压力预测。;实验室和大规模试验数据的独特结合揭示了回填土的有趣特征剪切强度。例如,尽管测试的回填土仅粉尘为7%,但内聚力显着提高了被动阻力,并有助于限制动态土压力。还发现在平面应变测试配置中回填摩擦角相对较高,有利于被动和动态土压力载荷下的响应。

著录项

  • 作者

    Wilson, Patrick Richard.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 394 p.
  • 总页数 394
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号