首页> 外文学位 >Structural and biochemical studies of the regulation of soluble methane monooxygenase from Methylococcus capsulatus (Bath).
【24h】

Structural and biochemical studies of the regulation of soluble methane monooxygenase from Methylococcus capsulatus (Bath).

机译:荚膜甲基球菌(Bath)中可溶性甲烷单加氧酶调控的结构和生化研究。

获取原文
获取原文并翻译 | 示例

摘要

Methane monooxygenase (MMO) enzymes catalyze the oxidation of methane to methanol in methanotrophic bacteria. Some methanotrophs, including Methylococcus capsulatus (Bath), express two forms of MMO. At high copper levels, a membrane-bound or particulate MMO (pMMO) is expressed whereas a soluble form of MMO (sMMO) is produced when copper is limited. The mechanism of this copper switch is not understood.;This work focuses on understanding the regulation of sMMO because it has great potential in bioremediation applications. When copper availability is minimal, four regulatory proteins, MmoS, MmoQ, MmoG and MmoR, are proposed to be involved in a phosphorylation/interaction scheme whereby MmoS senses the copper concentration and MmoR activates expression of sMMO in M. capsulatus (Bath).;All four regulatory proteins were cloned, expressed and purified as a first step toward understanding their roles in the copper switch mechanism. Though obvious copper binding motifs are not present in MmoS, analysis of its sequence reveals two N-terminal PAS domains that may be the sensors of copper in M. capsulatus (Bath). Biochemical characterization of MmoS revealed the presence of a flavin adenine dinucleotide (FAD) cofactor with a redox potential of E0 = -290 +/- 2 mV at pH 8.0 and 25°C. A new model for the regulation of sMMO was developed based on the biochemical characterization of MmoS, also involving MmoQ, MmoR and MmoG.;The X-ray crystal structure of the M. capsulatus (Bath) MmoS N-terminal PAS domains was determined to 2.34 A resolution. Both domains exhibit the prototypical PAS domain alpha/beta topology and are structurally similar, but the FAD cofactor is housed solely within one PAS domain. The structure suggests key residues that may be involved in MmoS FAD redox chemistry and signal transduction, and provides new insight into the architecture of tandem PAS domains.;Finally, in an effort to increase our knowledge of flavoprotein chemistry, we have crystallized and solved the structure of styrene monooxygenase A from Pseudomonas putida S12 to 2.9 A resolution. Model building is currently in progress. The completed structure will provide insight into the mechanism of SMOA and expand our knowledge of flavoprotein monooxygenase chemistry.
机译:甲烷单加氧酶(MMO)酶可催化甲烷在甲烷氧化菌中氧化为甲醇。一些甲烷营养生物,包括荚膜甲基球菌(Bath),表达两种形式的MMO。在高铜含量下,会表达出膜结合的或颗粒状的MMO(pMMO),而当铜含量受限时会产生MMO(sMMO)的可溶形式。目前尚不清楚这种铜开关的机理。本工作着重于了解sMMO的调控,因为它在生物修复应用中具有巨大的潜力。当铜的可利用性最小时,提出了四种调节蛋白MmoS,MmoQ,MmoG和MmoR参与磷酸化/相互作用方案,从而MmoS感测铜的浓度,而MmoR激活荚膜分支杆菌(浴)中sMMO的表达。克隆,表达和纯化所有四种调节蛋白,是了解它们在铜开关机制中作用的第一步。尽管在MmoS中不存在明显的铜结合基序,但对其序列的分析揭示了两个N端PAS域,它们可能是荚膜分枝杆菌(Bath)中铜的传感器。 MmoS的生化特征表明存在黄素腺嘌呤二核苷酸(FAD)辅因子,在pH 8.0和25°C下氧化还原电位为E0 = -290 +/- 2 mV。基于MmoS的生化特性,开发了一种新的sMMO调控模型,该模型还涉及MmoQ,MmoR和MmoG。确定了荚膜梭状芽胞杆菌(Bath)MmoS N端PAS域的X射线晶体结构, 2.34分辨率。这两个域都展现出典型的PAS域α/β拓扑,并且在结构上相似,但是FAD辅助因子仅位于一个PAS域中。该结构表明可能与MmoS FAD氧化还原化学和信号转导有关的关键残基,并为串联PAS域的结构提供了新的见识。最后,为了增加我们对黄素蛋白化学的了解,我们已经结晶并解决了恶臭假单胞菌S12的苯乙烯单加氧酶A的结构达到2.9 A的分辨率。模型构建目前正在进行中。完整的结构将提供对SMOA机制的深入了解,并扩展我们对黄酮蛋白单加氧酶化学的认识。

著录项

  • 作者

    Ukaegbu, Uchechi Eunice.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 184 p.
  • 总页数 184
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号